求级数nx^n-1的和函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:24:29
求级数nx^n-1的和函数
求幂级数∑(n=1,∞)nx^n的收敛域与和函数.

把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1,(|x|

求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

求幂级数 ( nx^n-1)/(n-1) 的和函数.

记f(x)=∑(n=2~∞)[nx^(n-1)]/(n-1)=∑(n=2~∞)x^(n-1)+∑(n=2~∞)[x^(n-1)]/(n-1)=g(x)+h(x),利用已知级数∑(n=1~∞)x^(n-

急.求级数[∞∑n=1] nx^(2n)的和函数S(x),并求[∞∑n=1] n/2^n

可用求积求导法求和,如图.经济数学团队帮你解答.请及时评价.再问:求大神加我帮我舍友解题现在她们在考试拜托啦597651048~再答:请采纳。本人不用qq,只在知道答题。

求幂级数∑(∞,n=1)1/nx∧n的收敛域和函数

用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S′=∑(∞,n=1)x∧(n-1)=1/(1-

求幂级数和(n=1)nx^(n+1)收敛域和和函数

可用求积求导法求和函数.经济数学团队帮你解答.请及时评价.谢谢!再问:我可以问下,你求敛散时候,根据比值收敛法得出大于1,可以知道/nx^(n-1)/发散,可是绝对值发散不能得出没加绝对值发散,而绝对

求幂级数∑(n=1,∞) nx^(n-1)的和函数.

令an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x

求幂级数∑(∞,n=1)nx^n的收敛域及和函数

令原式=f(x)=∑nx^n积分得:F(x)=∑x^(n+1)=x^2/(1-x),当|x|

1.求级数∑nx^(n-1)的积函数?(∑上面是∞,下面是n=1.)

首先,收敛半径r=1,x=±1时级数发散,所以收敛域是(-1,1)其次,设积函数是s(x),则s(x)=∑nx^(n-1)=∑[x^n]'=[∑x^n]'=[1/(1-x)]'=1/(1-x)^2其中

求幂级数∑(∞,n=1)nx^(n-1)的收敛域及和函数

另an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x

求级数的收敛区间∑(1到无穷) * 2^(-nx) / n^n 尤其是端点处的情况,..

用比值判别法(ratiotest)令an=n!*2^(-nx)/n^na(n+1)/an=(n+1)2^(-x)*n^n/(n+1)^(n+1)=2^(-x)*n^n/(n+1)^n=2^(-x)*[

求这个级数的和函数 求和符号 x^(2n-1)/(2n-1)

最后结果应该是1/2ln(1+x)/(1-x),其中-1<x<1这道题是大学数学分析学的,用逐项求导再求积分求解的,输入太麻烦,直接写结果了.

在区间(1,-1)内,求幂级数∑nx^n=x+2x^2+.+nx^n的和函数,

令S=x+2x^2+...+nx^nxS=x^2+2x^3+...+nx^(n+1)若x≠1则相减得(1-x)S=x+x^2+...+x^n-nx^(n+1)=[x^(n+1)-x]/(x-1)-nx

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数∑(n=1,∞) nx^(n+1)的和函数.

再问:最后的呢????再答:最后的你自己算一下就得了再问:我算的和答案不一样〒_〒再答:再问:我算的也是这个,但是答案是1/(1-x)∧2再答:答案错了,x=0时,原级数为0,而答案是1,显然你说的答

求幂级数∑(n-1,到正无穷大)nx^n 的和函数

∑[n-1,+∞)nx^n=∑[n-1,+∞)(n+1-1)x^n=∑[n-1,+∞)(n+1)x^n-∑[n-1,+∞)x^n=∑[n-1,+∞)∫x^(n+1)dx-∑[n-1,+∞)x^n=∫∑

1.求证:收敛级数n从1到无穷∑{sin nx/(√n)}不可能是某个黎曼可积函数的傅立叶级数

1.如果f可积,那么因为在一个周期上,所以f^2可积.另外对于f,bn=1/sqrt(n),于是有∑bn^2发散,而由parseval等式可知这是不可能的.2.1)级数正规收敛,所以一致收敛,所以函数

求 (n+1)x^2n 的和函数 ,并求 级数 (n+1)/2^(n+1) 的和

利用利用逐项积分可记    S(x)=Σ(n=1~inf)[(n+1)x^n],积分,得    ∫[0,x]S(t)dt=Σ(n=1~inf)∫[0,x][(n+1)t^n]dt =Σ(n=1~inf