求级数ln(1 1 n)敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:21:49
求级数ln(1 1 n)敛散性
级数1/(a^(ln n))的敛散性(a>0)

n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.

级数∑(ln n /n^p)) 的敛散性 用比较判别法证明

比较法p>1时lim(n→∞)(lnn/n^p)/(1/n^(1+(p-1)/2))=lim(n→∞)lnn/n^(p-1)/2=lim(n→∞)(1/n)/(p-1)/2*n^[(p-1)/2-1]

级数n从1到无穷 ln(n*sin(1/n))判断敛散性

泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1

级数ln(1+1/n)的敛散性怎么看得出来

ln(1+x)/x-->1(x-->0)所以该级数跟调和级数敛散性一样,发散

级数∑ln(n+1/n)的敛散性是什么,

由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散

级数的敛散性题目 Σ(1/n - ln(n+1)/n)的敛散性怎么判断?

由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.

判断正项级数的敛散性(1/√n)*ln(n+1/n-1)

ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?

判断级数(-1)∧n ln(n)/n的敛散性

是条件收敛.首先由于当n趋于正无穷时,ln(n)/n->0,所以这是一个Leibniz级数,Leibniz级数必定收敛,所以该级数收敛.又显然:|(-1)^n*ln(n)/n|=ln(n)/n>1/n

求判断无穷级数收敛性怎么做 ∑ ln(n+1) / n+1

发散啊,对于n>N设N>e-1,有ln(n+1)>1,所以ln(n+1)/n+1>1/n+1,而1/n+1的级数是发散的所以∑ln(n+1)/n+1发散部分和发散,必发散

求级数ln(n+1)/(n+1) * x^(n+1)收敛域

u(n+1)/un的极限为1,因此收敛域[-1,1).

求级数敛散性,n从2到无穷大,(根号下n)分之一乘ln [(n+1)/(n-1)]

除以(根号下n)分之一与n-1分之2,判断下面敛散性即可

讨论级数 (-1)^n * ln(1+n) / (1+n) (n由1到正无穷的级数)的敛散性,

设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

求级数敛散性:Un=1/(n*(ln n)^p*(ln ln n)^p) 其中(p>0,q>0)

Un=1/(n·(ln(n))^p·(ln(ln(n)))^q).首先考虑通项为An=1/(n·(ln(n))^p)的级数.通项非负单调递减,根据Cauchy积分判别法,级数收敛当且仅当∫{10,+∞

级数从1到∞ Σ[1/ln(n+2)]*sin(1/n) 判断该级数的敛散性

sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p

求级数敛散性∑(2→无穷)[ln(lnn)]^(-n),求敛散性,

当n>3^9>e^(e²),有ln(n)>e²,ln(ln(n))>2.此时成立0根据(正项级数)比较判别法,由∑2^(-n)收敛知∑(ln(ln(n)))^(-n)也收敛.

求级数收敛性问题级数 为An=Ln(1+1/n)的求和,n是1到正无穷 ,判断这个级数的收敛性

因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散