求级数ln(1 1 n)敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:21:49
n≥1.当01,u=1/a^(lnn)=1/[e^(lnn)]^p=1/n^p,则级数收敛.
比较法p>1时lim(n→∞)(lnn/n^p)/(1/n^(1+(p-1)/2))=lim(n→∞)lnn/n^(p-1)/2=lim(n→∞)(1/n)/(p-1)/2*n^[(p-1)/2-1]
泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1
ln(1+x)/x-->1(x-->0)所以该级数跟调和级数敛散性一样,发散
由limln(1+1/n)/(1/n)=1有原级数与∑1/n有相同敛散性.所以原级数发散
n≥20
由于当x趋于0时,lim【x-ln(1+x)】/x^2=lim【1-1/(1+x)】/2x=1/2,因此有1/n-ln(1+1/n)等价于1/(2n^2),故原级数收敛.
ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?
是条件收敛.首先由于当n趋于正无穷时,ln(n)/n->0,所以这是一个Leibniz级数,Leibniz级数必定收敛,所以该级数收敛.又显然:|(-1)^n*ln(n)/n|=ln(n)/n>1/n
发散啊,对于n>N设N>e-1,有ln(n+1)>1,所以ln(n+1)/n+1>1/n+1,而1/n+1的级数是发散的所以∑ln(n+1)/n+1发散部分和发散,必发散
u(n+1)/un的极限为1,因此收敛域[-1,1).
除以(根号下n)分之一与n-1分之2,判断下面敛散性即可
设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛
∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛
Un=1/(n·(ln(n))^p·(ln(ln(n)))^q).首先考虑通项为An=1/(n·(ln(n))^p)的级数.通项非负单调递减,根据Cauchy积分判别法,级数收敛当且仅当∫{10,+∞
sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p
当n>3^9>e^(e²),有ln(n)>e²,ln(ln(n))>2.此时成立0根据(正项级数)比较判别法,由∑2^(-n)收敛知∑(ln(ln(n)))^(-n)也收敛.
当p>1时,1/n^plnn
因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散