求级数3 根号下(2n² n)的收敛性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:58:40
求级数3 根号下(2n² n)的收敛性
级数∑n=1到∞ (根号下n)*sin(1/n^2)的敛散性

收敛,因为当n充分大的时候,sin(1/n^2)

求[(n次根号下a+n次根号下b+n次根号下c)/3]的n次方在n趋向于无穷大是的极限

之前打错了[(n次根号下a+n次根号下b+n次根号下c)/3]的n次方在n趋向于无穷大是的极限是3次根号下abc即a^1/3*b^1/3*c^1/3a^(1/n)~1+(1/n)lnaa^(1/n)+

求极限n趋向于无穷 [(√n+2)-(√n+1)]√n Ps:是根号下的(n+2) 根号下的(n+1)

lim[√(n+2)-√(n+1)]√n=lim√n*[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)]=lim√n*(n+2-n-1)/[√(n+2)+√(

lim[(根号下n^2+n)-n],n趋向于无穷,求函数的极限

分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/

级数根号下(2n+1)/n的@次方收敛的充要条件是@满足不等式?

@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2

求数列narctannx/根号下n^2+n的极限

lim(n->∞)narctan(nx)/√(n^2+n)=lim(n->∞)arctan(nx)/√(1+1/n)=π/2

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

∞ 证明下列级数的收敛性:∑(根号下n+2 减去2倍的根号下n+1 加上根号下n) n=1

通项an=根号(n+2)-根号(n+1)-【根号(n+1)-根号(n)】分子有理化=1/【根号(n+2)+根号(n+1)】-1/【根号(n+1)+根号(n)】通分=【根号(n)-根号(n+2)】/(【

判别级数∑(n=1,∝) sin^n/n*根号下n的敛散性,

考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下

求级数敛散性,n从2到无穷大,(根号下n)分之一乘ln [(n+1)/(n-1)]

除以(根号下n)分之一与n-1分之2,判断下面敛散性即可

已知m=根号下n-3加根号下3-n+2,求m+n的值

根号下大于等于0n-3>=0,n>=33-n>=0,n

求级数lnn/(n^2)的敛散性

(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(

求级数2n-1/3^n的敛散性

再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步

求级数[(n!)^3*27^n]/(3n)! 的敛散性

这个是正项级数,用不上Abel定理,试试比值判别法.

无穷级数 根号n-1/4的根号下(n^2+n)的敛散性

级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因    √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要

求极限根号下n的平方加上2n减去n.n趋向于无穷大.

lim(n→+∞)√(n^2+2n)-n=lim(n→+∞)2n/[√(n^2+2n)+n]=1