求级数3 根号下(2n² n)的收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:58:40
收敛,因为当n充分大的时候,sin(1/n^2)
之前打错了[(n次根号下a+n次根号下b+n次根号下c)/3]的n次方在n趋向于无穷大是的极限是3次根号下abc即a^1/3*b^1/3*c^1/3a^(1/n)~1+(1/n)lnaa^(1/n)+
lim[√(n+2)-√(n+1)]√n=lim√n*[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)]=lim√n*(n+2-n-1)/[√(n+2)+√(
分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
lim(n->∞)narctan(nx)/√(n^2+n)=lim(n->∞)arctan(nx)/√(1+1/n)=π/2
再问:错的,答案是三分之一再答:
通项an=根号(n+2)-根号(n+1)-【根号(n+1)-根号(n)】分子有理化=1/【根号(n+2)+根号(n+1)】-1/【根号(n+1)+根号(n)】通分=【根号(n)-根号(n+2)】/(【
考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下
除以(根号下n)分之一与n-1分之2,判断下面敛散性即可
根号下大于等于0n-3>=0,n>=33-n>=0,n
(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(
再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步
这个是正项级数,用不上Abel定理,试试比值判别法.
级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因 √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要
lim(n→+∞)√(n^2+2n)-n=lim(n→+∞)2n/[√(n^2+2n)+n]=1
原式=(1/2)^n=0