求级数(1 b^n) (1 a^n)的敛散性(a>0,b>0),并证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:09:32
根据莱布尼兹判敛法,an+1<an,liman=0可以判定收敛.根据其正项级数sinx/n通项等价于x/n(可以用比较法的极限形式),所以正项级数发散,所以原级数是条件收敛.再问:这道题这样答好像不对
发散,用收敛的必要条件判断
由题目有1/a再问:那个后面是∑1/(an-bn)没写清楚不好意思>-
发散再问:过程...再答:你能把分子分母表示清楚吗?用一下括号再答:因为n~无穷大,(n-1)/(n+3)≠0再问:再问:要求从比较判别法达朗贝尔柯西三种方法中选择来求出...再答:再问:再问:等于1
条件收敛,这是交错级数.
俺来回答一下,马上拍照再答:
n→+∞时[a^n+(-b)^n]/[a^(n+1)+(-b)^(n+1)]={[1+(-b/a)^n]/[a-b(-b/a)^n]→1/a,|a|>|b|;.{[(-a/b)^n+1]/[a(-a/
这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.
如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1
再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步
是收敛的再答:
发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
因为1/n(n+1)=1/n-1/(1+n)所以A=1,B=-1
原式=(1/2)^n=0
(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=