求级数(1 b^n) (1 a^n)的敛散性(a>0,b>0),并证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:09:32
求级数(1 b^n) (1 a^n)的敛散性(a>0,b>0),并证明
求级数(-1^n)sinx/n的敛散性

根据莱布尼兹判敛法,an+1<an,liman=0可以判定收敛.根据其正项级数sinx/n通项等价于x/n(可以用比较法的极限形式),所以正项级数发散,所以原级数是条件收敛.再问:这道题这样答好像不对

求级数∑[(n+1)/2n]^(1/n)敛散性

发散,用收敛的必要条件判断

证明如果级数∑(1/b)^n收敛a>b>0则∑(1/a^n-b^n)收敛

由题目有1/a再问:那个后面是∑1/(an-bn)没写清楚不好意思>-

求级数n-1/n+3的敛散性

发散再问:过程...再答:你能把分子分母表示清楚吗?用一下括号再答:因为n~无穷大,(n-1)/(n+3)≠0再问:再问:要求从比较判别法达朗贝尔柯西三种方法中选择来求出...再答:再问:再问:等于1

求级数(-1^n)sin1/n的敛散性

条件收敛,这是交错级数.

级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)

n→+∞时[a^n+(-b)^n]/[a^(n+1)+(-b)^(n+1)]={[1+(-b/a)^n]/[a-b(-b/a)^n]→1/a,|a|>|b|;.{[(-a/b)^n+1]/[a(-a/

级数a^(n*(n+1)/2)/[(1+a^0)(1+a^1)…(1+a^n)]

这道题不用分类讨论,无论a取何值都是收敛的,因为这个表达式只是数列通项,不是部分和数列的表达式,楼主可能这里犯错了.

求级数(-1)^(n-1)/n^2的和

如果可以使用结论∑{1≤n}1/n^2=π^2/6,那么求这个和不难:∑{1≤n}(-1)^(n-1)/n^2=∑{1≤k}1/(2k-1)^2-∑{1≤k}1/(2k)^2(对n分奇偶,n=2k-1

求级数2n-1/3^n的敛散性

再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步

求级数n^3+2/1敛散性

是收敛的再答:

求级数1/(1+1/n)^n的收敛性

发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散

证明:如果级数∑a(n)收敛,级数∑b(n)发散,则级数∑[a(n)+b(n)]发散.

用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.

已知:1/n(n+1)=A/n + B/(n+1) 求A,B的值

因为1/n(n+1)=1/n-1/(1+n)所以A=1,B=-1

求级数(-1)^n/(2n+1)的和

(-1)^n/(2n+1)=(-1)^n*(1)^(2n+1)/(2n+1)令S(x)=∑(-1)^n*x^(2n+1)/(2n+1)S'(x)=(∑(-1)^n*x^(2n+1)/(2n+1))'=