f(x)=1,g(x)=sec^2*x-tan^2*x,fx与gx是否相同
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:17:20
tan^2x+1=sin^2x/cos^2x+1=(sin^2x+cos^2x)/cos^2x=1/cos^2x=sec^2x
对任意x属于r,都有f(x+1)=f(x),g(x+1)=-g(x),且h(x)=f(x)g(x在[0,1]上的值域[-1,2].则h(x)在[0,2]上的值域答案:由题意可知,f(x)在[0,1]和
已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2.求f(x),g(x)的解析式.因为:f(x)是偶函数所以:f(-x)=f(x)因为:g(x)是奇函数所以:f(-x)=-f(
f(x)=|sinx+cosx+tanx+cotx+secx+cscx|=|(sinx+cscx)+(cosx+secx)+(tanx+cotx)|∵sinx+cscx≥2√(sinx·cscx)=2
∫sec³xdx=∫(secx)(sec²x)dx=∫secxd(tanx)=secx*tanx-∫tanxd(secx),这里运用分部积分法=secx*tanx-∫(tanx)(
这个是错误的,正确的应该是lim[f(x)]^g(x)=e^limln[f(x)]^g(x)=e^limg(x)ln[f(x)-1]
tanx/(1-cotx)+cotx/(1-tanx)=tanx/(1-cosx/sinx)+cotx/(1-sinx/cosx)=sinxtanx/(sinx-cosx)+cosxcotx/(cos
因为(f,g)=1所以存在u,v,使得:fu+gv=1fu+ghu+gv-ghu=1(f+gh)*u+g*(v-hu)=1因此有:(f+gh,g)=1其实这种题只要构造出来就可以了~有不懂欢迎追问
∫f(x)dx=sec²xf(x)=(sec²x)'=(2secx)*(secxtanx)=2sec²xtanx∫xf'(x)dx=∫xd[f(x)]=xf(x)-∫f(
令a=x+1则x=a-1g(a)=f(a-1)所以g(x)=f(x-1)=(x-1)²-5(x-1)+4=x²-7x+10
对于f(x)的x范围是(-1,正无穷)对于g(x)是(负无穷,1)取交集:x范围是:(-1,1)而f(x)+g(x)=Loga(x+1)(1-x)代入f(-x)=Loga(x-1)(1+x)=f(x)
现在不用了,分别是余弦的倒数和正弦的倒数:secx=1/cosxcscx=1/sinx
我给你两个公式,你应该可以自己求(secx)'=secxtanx(tanx)'=1/(1+x^2)(uv)'=u'v+uv'
二画图可知,当a于(-1,0),b属于(-2,-1)时可能存在F(a)=F(b)所以0
(x-1)^2-1=x^2-2xx0由f(x)=x-1
该氮化钽,cotx,secx,CSCX所有与sinx,而且cosx更换,太:Y=6+cosx+(1+sinx的+cosx)/(sinxcosx)记得T=sinx的+cosx,然后2sinxcosx=(
(1+sinx)/(1-sinx)=(1+sinx)^2/(1-sinx)(1+sinx)=(1+2sinx+sin^2x)/(1-sin^2x)=(1+2sinx+sin^2x)/cos^2x=se
sec²x是f(x)的一个原函数,就是说d(sec²x)/dx=f(x),所以f(x)dx=d(sec²x).用分部积分:∫xf(x)dx=∫xd(sec²x)
g(-x)=f(x)+f(-x)=g(x)所以是偶函数很高兴为您解答,skyhunter002为您答疑解惑如果本题有什么不明白可以追问,
设(f(x)g(x),f(x)+g(x))=d(x)所以d(x)|f(x)g(x),d(x)|f(x)+g(x)因为(f(x),g(x))=1所以由d(x)|f(x)g(x),得到d(x)|f(x)或