求空间一点(X0,Y0,Z0)到平面Ax By Cz D=0的最短距离.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:59:18
这题如果用焦半径求解可以看一眼出结果,但想必你们没学,因此下以圆锥曲线第一定义推导已知P到点(-c,0)与(c,0)距离差为定值2a根[(x+c﹚²+y²]-根[﹙x-c﹚
我来试试吧...由题,切线斜率k=(x0-2)(x0^2-1)则当k≥0时,切线方向向上,函数值逐渐增大,函数单调递增(x0-2)(x0^2-1)=(x0-2)(x0-1)(x0+1)≥0利用穿孔法,
第三点到第一点的距离为根号下[(x-x0)^2+(y-y0)^2+(z-z0)^2]第三点到第二点的距离为根号下[(x-x1)^2+(y-y1)^2+(z-z1)^2]
方向是(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))其中Fx(x0,y0,z0)的意思曲线对x的偏导在P点的取值再问:怎么推出来的哦?再答:其实你想问曲线还是曲面。。
(1)y=x^2+1.===>y'=2x=2.===>x=1.y=1^2+1=2.===>(1,2).(2).y-2=2(x-1).===>y=2x.
设椭圆方程为x^2/a^2+y^2/b^2=1求导得2x/a^2+2yy'/b^2=02yy'/b^2=-2x/a^2y'=-b^2x/a^2y把(x0,y0)代入x与yy'=k=-b^2x0/a^2
f‘(x)=(x-2)(x^2-1)所以该函数在区间|2,正无穷|U|-1,1|是单调递增函数在区间(负无穷,-1)U(-1,2)是递减函数
∵x^2/2+y^2=1∴x^2=2-2y^2∵MP=根号下[x^2+(y-1)^2]∴把x^2=2-2y^2带入得:MP=根号下[-(y^2+2y-3)]=根号下[-(y+1)^2+4]∵-1≤y≤
x²+(y-1)²=1令x=cosa则(y-1)²=1-cos²a=sin²ay-1=sinay=sina+1所以x+y=sina+cosa+1=√2
如果圆是(x-a)^2+(y-b)^2=r^2那么所求直线方程是(x0-a)(x-a)+(y0-b)(y-b)=r^2这个是切点弦公式,证明好像有点复杂
设切点为(a,f(a))则切线斜率k=f'(a)切线方程为:y=f'(a)(x-x0)+y0此直线也过(a,f(a)),代入得:f(a)=f'(a)(a-x0)+y0由此方程可解得a.进而得到f'(a
1.关于斜率问题,首先已知M的坐标,可知直线MO的斜率为Yo/Xo又因为互为垂直的直线,其斜率的乘积为-1,所以,过点M的圆的切线的斜率为-x0/y0.2.关于方程问题,因为M点在圆上,由已知的圆的方
先求出球面外法线方向的方向矢量(法矢量):f'x=2x,f'y=2y,f'z=2z.得法矢量为(x0,y0,z0)单位化:1/√(x0^2+y0^2+z0^2)(x0,y0,z0)=(x0,y0,z0
拍照给我来张再问:再答:这是个椭圆方程
曲面方程是F(x,y,z)=C的形式,过M0点的外法向量应该是(dF/dx,dF/dy,dF/dz)在M0点的取值,就是楼主写的n=(2x0/a^2,2y0/b^2,2z0/c^2).由于外法向量关键
可以利用向量的数量积来计算,m与AB的数量积=0,m与AC的数量积=0,解这个方程组即可,由于这是一个三元一次方程组,所以可以令z0=1,来求得x0,y0,这样就得到了法向量m
不一样呀.椭圆上一点只有一条切线,椭圆外一点有两条切线相同的都是通过直线代入椭圆方程,然后用判别式=0求出斜率再问:可以写下过程和结论吗。谢谢了再答:y=y0+k(x-x0)x^2/a^2+x^2/b
用D-H法则,这是最经典的机械臂坐标变换方法.再问:用这两个函数可以算出来么?transl([24.461,14.682,-1.44]);ctraj(T1,T2,length(t));为什么我总提示说
公式为|x0+ay0+bz0+c|÷根号下(1+a^2+b^2)