求积分 X倍的根号下x的平方-1分之一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:08:46
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
方法一:方法二:再问:太感谢了,真详细╮(╯▽╰)╭
∫x√(1-x^2)dx=-1/2∫√(1-x^2)d(-x^2)=-1/3(1-x^2)^(3/2)
设x=sint,dx=costdt,(以下省略积分符号)原式=[(sint)^2/cost]costdt=(sint)^2dt=(1-cos2t)/2*dt=1/2[dt-cos2tdt)=1/2t-
直接由积分表得:∫√(1+x^2)dx=x/2(√(1+x^2)+0.5ln(x+√(1+x^2))+c再问:考试时候没有积分表啊再答:那我也没法了,谁有那么多的时间去背积分表啊!
再问:非常感谢您的指点。
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
y=3x-2(√1-x²)设x=cosa,a∈[0,π]则y=3cosa-2sina=√(9+4)sin(a+ψ)∴最大值是√(9+4)=√13,最小值是-√(9+4)=-√13
令x=sinu,则:u=arcsinx,dx=cosudu.∫[(1+x^2)/√(1-x^2)]dx=∫{[1+(sinu)^2]/√[1-(sinu)^2]}cosudu=∫[1+(sinu)^2
F(x)=∫ydx=∫√(1-x^2)dx令x=sint,则√(1-x^2)=cost,dx=costdt,从而∫√(1-x^2)dx=∫cost^2dt=∫[(1+cos2t)/2]dt=∫(1/2
很显然楼上看错了题目呢,并不是∫x/√(x+1)dx∫√x/√(x+1)dx=∫2√xd√(x+1)由分部积分法=2√x*√(x+1)-∫2√(x+1)d√x对于∫2√(x+1)d√x,令√x=t,则
再问:亲,你在第一步就化错了吧再答:
用三角替换.再问:怎么做?求详细解答再答:设x=sina,那么后面的就可以把根号去掉了。后积分区域变成pai/2-pai/2,积分式为(sina立方*cosa-cosa)da这不就好做了嘛。后面分开来
y=x²+4x-5√xy′=2x+4-5/(2√x)
楼上求导求错了.详解见图.点击放大,再点击再放大.
替换x=sect,tant=根号(sec^2t-1)=根号(x^2-1)dx=secttant积分=积分sect*根号(sec^2t-1)secttantdt=积分sect*根号(tan^2t)sec