求矩阵A的列向量的一个最大无关组

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:55:26
求矩阵A的列向量的一个最大无关组
一个n级矩阵A的行(或列)向量组线性无关,则A的秩为?>

一个n(级)阶矩阵A的行(或列)向量组线性无关,则A的秩为?A的秩:r(A)=n一个n阶矩阵A的行(或列)向量组线性无关,则有A的行列式|A|≠0,A为满秩矩阵,A的秩为n.

怎样求矩阵的列向量组的一个最大线性无关组.

每个非零行,从左至右第1个非零的数所处的列对应的向量,构成一个极大无关组如:101234034567000432000000则a1,a2,a4就是一个极大无关组

利用初等行变换求下列矩阵的秩与列向量组的一个最大线性无关组,并把其余列向量用最大线性无关组表示:

12110311213014-1第3行减去第2行,第5行减去第4行,第4行减去第1行,第2行减去第1行1210-2201-101-101-1第1行加上第2行,第2行加上第3行×2,第4行减去第3行,第

A为5*6矩阵,则矩阵AT*A的列向量组线性相关还是无关?

A^TA是6*6矩阵由于r(A^TA)再问:...考试已经过了好久了-_-#再答:嗯刚看到...

求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示

3-r2,r2-3r1,r3-3r1,r4-r125311743012300120135r4-r2-r3,r2-2r3,r1-17r3253109010-100120000r1-31r22500400

向量的极大无关组这道题是求一个向量组的所有极大无关组,化简成阶梯型矩阵后变成如下:列向量组{a1,a2,a3,a4,a5

这道题看你的理解了,可以有多种办法第一种:像你说的那种,用行式列的值来算,如果为零就不是了第二种:三个列向量构成的一个矩阵,求出秩=3的组求秩的方法很多:1.可以用最基础的行列式的方法,实际,这正好是

设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.

先证CX=0与AX=0同解.一方面,显然AX=0的解是CX=BAX=0的解.另一方面,设X1是CX=0的解,则CX1=0.所以(BA)X1=0所以B(AX1)=0因为B列满秩,所以有AX1=0.即X1

m×n矩阵满秩,能推出行向量线性相关还是列向量线性相关?他们的最大无关组的向量个数又是多少?

没有m×n矩阵满秩的说法,满秩是对方阵而言.m×n矩阵只能说行满秩或列满秩.行满秩则行向量组线性无关,列满秩则列向量组线性无关.行秩和列秩相等,称为矩阵的秩,最大无关组的向量个数等于矩阵的秩.再问:明

判断向量组A的线性相关性,并求它的一个最大无关组,再把其余向量用这个最大无关组线性表示.

以上第一步:第三行乘-3加到第二行,第三行乘-2加到第四行.以上第二步:第四行乘-1/4,第一行乘7加到第二行,第一行乘-2加到第三行.以上第三步:第四行乘-1加到第一行.从最后的矩阵可看出A的秩为3

设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且

R(A^T)=sA^Tx=0的基础解系含n-s个向量,令其构成矩阵B则B为列向量线性无关的n行n-s列矩阵且有A^TB=0,即有B^TA=0由于B的列与A^T的行正交(齐次线性方程组的解与系数矩阵的行

利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示

(a1,a2,a3,a4,a5)=112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)1122102

利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组 线性表示.

112210215-1203-131104-1r3-2r1,r4-r1112210215-10-2-1-5100-22-2r3+r2,r4*(-1/2)112210215-100000001-11r1

利用初等行变换求下列矩阵的列向量组的一个极大线性无关组

化行阶梯矩阵并没什么高招记住一点:从左到右一列一列处理r3-2r1,r1-2r2,r4-3r20-33-1-611-2140-44-4003-34-3第1列就处理好了那么,第1列只有1个非零的数1,之

A是m*n阶矩阵,B是n*s阶矩阵,B的列向量线性无关,若A的列向量线性无关,求证AB的列向量线性无关.

知识点:齐次线性方程组Ax=0只有零解的充分必要条件是A的列向量组线性无关.证明:考虑齐次线性方程组ABx=A(Bx)=0.由于A的列向量组线性无关,所以Bx=0又由B的列向量组线性无关,所以x=0所

A是4乘以3的矩阵,A的列向量组线性无关,求A的秩

第一题:3第二题:y1^1+y2^2-y3^2第三题:-1第四题:10

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

A^2=AA假设有A^2x=AAx=0,则有Ax=0,R(A)=n,所以x只有零解,所以有A^2*0=0,所以R(A^2)=n,故矩阵A^2的列向量线性无关

求列向量组一个极大线性无关组,并把其余向量用极大线性无关组表出.矩阵如图.

A=(α1,α2,α3,α4,α5)=2-1-11211-2144-62-2436-979r4-r1-r2,r3-2r1,r1-2r20-33-1-611-2140-44-4006-653r4+2r1

证明:若n阶矩阵A的列向量线性无关,则A^2的列向量也线性无关.

楼上看错了吧,是线性无关,不是线性相关.其实很容易,方阵A的列线性无关等价于det(A)非零,也等价于det(A^2)=det(A)^2非零.

上三角形矩阵的列向量组是 Rn 的一个最大无关组吗?

当上三角形矩阵的主对角线上元素全不为0时,上三角形矩阵的列向量组是线性无关的,此时是最大无关组,否则不是再问:能证明一下吗?再答:向量组线性无关《===》向量组的秩=向量组中向量的个数。当上三角形矩阵