求由曲线y=x^2与y=4x-x^2所围成的图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:08:58
求由曲线y=x^2与y=4x-x^2所围成的图形的面积
高数定积分 求由曲线y=x²,y=x与y=2x所围成的平面图形的面积?

先画出图形再求面积.经济数学团队帮你解答.请及时评价.再问:好吧,原来求的是红色阴影的面积,一直以为是围起来的图形的全部面积-_-||

求由曲线y^2=x+4与x+2y-4=0围城的图形的面积

欲求曲线y^2=x+4与x+2y-4=0围成的图形的面积:(1)求曲线y^2=x+4与x+2y-4=0的交点,y^2=8-2y,解得交点为(0,2)和(12,-4),x+2y-4=0与x轴交点为(4,

求由曲线y=x平方与y=x所围的成图形的面积

1,y=x²与y=x的交点横坐标为x=0和x=1,则所围的成图形的面积S=∫(0~1)(x-x^2)dx=(1/2*x^2-1/3*x^3)|(0~1)=1/2-1/3=1/62,所围的成图

求由曲线y=根号x与直线y=x所围成的图形的面积

曲线y=根号x与直线y=x交点是(0,0)与(1,1)由曲线y=根号x与直线y=x所围成的图形的面积S(上1下0)(根号x-x)dx=(上1下0)(2/3*x^(3/2)-1/2*x^2)=1/6

求由曲线y^2=2x,与直线y=x-4所围成的图形D的面积

解法一:图形D的面积=∫(-2,4)(y+4-y²/2)dy=(y²/2+4y-y³/6)│(-2,4)=4²/2+4*4-4³/6-(-2)&sup

求由曲线y=x²与y=x+2围成图形的面积

用定积分用定积分y=x²与y=x+2的交点为:(-1,1),(2,4)则由曲线y=x²与y=x+2围成图形的面积等于y=x+2-x²在[-1,2]上的定积分.所以:S=∫

求由直线Y=x,x=2,曲线所围图形的面积

条件不全吧,两条直线怎么确定一个图形,若非要求它的面积为无穷大.

求由曲线x^2+y2=|x|+|y|所围成的图形的面积.

x^2+y^2=|x|+|y||x|^2||y|^2-|x|-|y|=0(|x|-1/2)^2+(|y|-1/2)^2=1/2x>0&y>0:(x-1/2)^2+(y-1/2)^2=1/2,这是一个以

求解微积分题.求由曲线y=x^2/2与曲线x^2+y^2=8所围图形的面积

圆化成极坐标计算方便,抛物线仍用直角坐标计算

求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

联立y=x2+2y=3x,解得x1=1,x2=2∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=[13X3+2X−32X2]10+[32X2−13X3−2X]21=1

高二定积分问题!急!1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.2、求曲线y^2=2x与直线y=x-4

1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.y=x^2-2x+3=(x-1)^2+2y最小值为2将x轴向上平移2个单位y变化y+2,则两个函数化为y=(x-1)^2y=x+1求二者交

求由曲线x^2+y^2=x+y围城的图形的面积

x^2+y^2=x+y(x^2-x+1/4)+(y^2-y+1/4)=1/2(x-1/2)^2+(y-1/2)^2=1/2所以曲线表示一个圆,半径是根号(1/2)那么面积是:Пr^2=П*(√(1/2

求由曲线y=x²-1与直线y=x所围成的图形面积

联立两个方程求交点的x坐标:x²-1=x,求得x1=(1-√5)/2,x2=(1+√5)/2,那么两曲线围成的图形面积S=∫x1→x2(x^2/2-x^3/3+x)=(x2^2/2-x2^3

求由曲线y=2-x2与直线y=2x+2围成图形的面积.

由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2

由曲线y^2=x与直线x=1围成图形的面积?

用积分的方法,对(根号x)从0到1积分,去掉积分号就是2/3乘x^(3/2)从0到1,算得2/3,再乘两倍就是4/3

求由曲线y=e^x(x

绕x轴:∫0-∞(pi*(e^x)^2)*dx=(pi/2)*[e^2x]0-∞=pi/2绕y轴:(与y轴交点(0,1))∫10(pi*(lny)^2)*dy=pi*[y*(lny)^2-2y(lny

求由曲线y=4-x平方与x轴所围成的平面图形的面积

y=4-x^2=0,得x=-2,x=2与x轴所围成的平面图形的面积=∫(-2,2)(4-x^2)dx=(4x-x^3/3)|(-2,2)=(4*2-2^3/3)-(4*(-2)-(-2)^3/3)=1