求由曲线y=sinx与x轴围城的平面图形的绕y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:12:48
求由曲线y=sinx与x轴围城的平面图形的绕y
求由曲线x=1-2y^2与直线y=x所围城的平面图形的面积

x=1-2y^2与直线y=x联立得y=1-2y^22y^2+y-1=0(2y-1)(y+1)=0y=1/2,y=-1x=1/2,x=-1化为定积分得∫[-1,1/2](1-2y^2-y)dy=(y-2

由曲线y=x的平方与y=1围城平面图形的面积是多少

y1=x^2y2=1围成面积相交于(-1,1)(1,1)面积Intergrate[(y2-y1),{x,-1,1}]=Intergrate[(1-x^2),{x,-1,1}=(x-x^3/3)|_(1

求由曲线y^2=x+4与x+2y-4=0围城的图形的面积

欲求曲线y^2=x+4与x+2y-4=0围成的图形的面积:(1)求曲线y^2=x+4与x+2y-4=0的交点,y^2=8-2y,解得交点为(0,2)和(12,-4),x+2y-4=0与x轴交点为(4,

求由曲线y=sinx(0

有公式你为什么不用呢?如果0

由曲线y=2-x2+和y=x围城的图形的面积为

y=2-x2+应该是y=2-x^2吧?若是,解法如下:联立y=2-x^2和y=x得交点为(1,1)、(-2,-2)∫(2-x^2-x)dx=[2x-0.5x^2-(1/3)x^3]=4.5(积分上下限

球由曲线y=lnx、x=e、y=0围城的图形绕y轴旋转生成旋转体的体积

是个环形物体.上限是1,下限是0围成图形的曲线是y=lnxx=e^y以及x=e体积V=π∫(0到1)[(e)²-(e^y)²]dy=π∫(0到1)[e²-e^(2y)]d

求由曲线x2+y2=|x|+|y|围城的图形的面积

由于图形是对称的,只考虑第一象限内的部分即可.此时绝对值号可以直接去掉x^2 + y^2 = x + y所以x^2 + 

求由曲线y=x^2+2 ,x=0,x=1 ,y=0围城的平面图形的面积.求完整步骤.

这要用到定积分.函数y=x^2+2的定积分为x^3/3+2x,故面积为1/3+2=7/3不方便写标准步骤.望采纳

求由曲线y=sinx,y=cosx(0

再问:能简单的解释下吗?再答:曲线y=f(x),直线x=a,x=b,以及x轴围成的平面图形绕x轴旋转一周的旋转体体积公式为∫(a到b)πf^2(x)dx.y=sinx与y=cosx相交于(π/4,√2

求由曲线x^2+y^2=x+y围城的图形的面积

x^2+y^2=x+y(x^2-x+1/4)+(y^2-y+1/4)=1/2(x-1/2)^2+(y-1/2)^2=1/2所以曲线表示一个圆,半径是根号(1/2)那么面积是:Пr^2=П*(√(1/2

求由曲线y=1/2x^2与y=x所围城的图形分别绕x轴和y轴旋转生成旋转体的体积

图形绕x轴旋转生成旋转体的体积=∫[π(x²-x^4/4)]dx=π(x³/3-x^5/20)│=π(8/3-8/5)=16π/15;图形绕y轴旋转生成旋转体的体积=∫[2πx(x

已知函数f括号x=-x方+2x求曲线y=f(x)与x轴所围城的平面图形的面积S

这个题你得给个面积范围啊,二次函数定义域本就是正负无穷,积出来的面积自然也是无穷了

求曲线积分∫(sinx^2+y)dx,其中L为由y^2=x,x=1所围城区域的边界

P=sin²x+y、Q=0P'y=1,Q'x=0∫(L)(sin²x+y)dx=∫∫(D)(0-1)dxdy=-∫(-1→1)dy∫(y²→1)dx=-2∫(0→1)(1

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

求由曲线y=sinx与直线y=2,x=0,x=Π/2围成平面图形的面积

矩形的面积减去y=sinx,x=Π/2和x轴围成的面积S=2×π/2-ʃ(0-->π/2)sinxdx =π-(-cosx|(0-->π/2)) =π+(co