求球面X*2 Y*2 Z*2=9与平面X Z=1的交线在xOy面上的投影方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:13:07
你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲
题目抄错了.肯定是有关,这太容易了.应该是与h成正比,且与c无关.面积=2πah
显然由于对称性,x=y=0z=∫∫∫xdxdydz/∫∫∫dxdydz=∫[0,2π]dθ∫[0,π/2]cosφsinφdφ∫[a,A]ρ^3dρ=2π[sin^2(φ)/2][0,π/2]ρ^4/
解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
不知你是光要画图呢?还是要进行计算.他们的交线就是位于z=2的平面上半径为2的一个圆,给你花了一个,你看看吧:clearall;clc;zz=@(x,y)(x.^2+y.^2)/2;ezsurf(zz
先求出球面外法线方向的方向矢量(法矢量):f'x=2x,f'y=2y,f'z=2z.得法矢量为(x0,y0,z0)单位化:1/√(x0^2+y0^2+z0^2)(x0,y0,z0)=(x0,y0,z0
Jz=a∫(r,-r)(r^2-y^2)dy=4ar^3/3
两个球面的圆心都在Y-Z面上,所以两个球面相交为一圆,其在xoy上的的投影应为椭圆曲线.长轴为√2,短轴为1,向Y+方向平移1/2,且x轴方向长,y轴方向短,所以曲线方程为2(x)^2+4(y-1/2
第一个函数化简得到z^2+x^2+y^2=4,z>0,是一个位于z轴正半轴的^2,总体积就是这两者之和,为(16-8*3^(1/2))π/3.
联立方程组,消去(x平方+y平方),得z=2(易知0),把z=2代入第一个方程,得x平方+y平方=4,所以相交的曲线是:{x平方+y平方=4,z=2}(曲线在平面的投影是x平方+y平方=4的圆
过点M(1,1,-3)垂直于平面x+2y+2z+3=0的直线方程为x=t+1,y=2t+1,z=2t-3,球心在该直线上,且球心到点M的距离=3,所以t=1,或-1.所以球心坐标为(2,3,-1)或(
区域Ω关于坐标面都对称,而被积函数中的x是奇函数所以积分值=0再问:区域Ω在第一卦象,忘了打进去了。所以答案不是零再答:再问:答案是πe(e^15-1)/16,我理解了。出错的地方在于的ψ取值范围为[
球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是
题目说清楚.x+y+z=100这个平面干什么用?要与它平行吗?就当作要求与平面x+y+z=100平行吧.可以设所求平面为x+y+z=n依据柯西不等式:(x^2+y^2+z^2)*(1+1+1)>=(x
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
由积分曲线的方程可以看出表达式具有轮换对称性,因此∮xds=∮yds=∮zds,同理∮x^2ds=∮y^2ds=∮z^2ds,所以∮xds=(1/3)(∮(x+y+z)ds)=0,∮y^2ds=(1/
因为xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=-a^2/2所以∫(xy+yz+zx)ds=∫(-a^2/2)ds=(-a^2/2)∫ds=(-a^2/2)*(2π
联立2x+y=0,4x+2y+3z=6得:z=2所以:已知直线在平面z=2上而:球面x^2+y^2+z^2=4的球心在原点,半径为2所以:z=2是这个球的切面所以,所求的平面方程就是:z=2再问:这个