求球体对直径转动惯量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:46:44
由题意这是一个已知初态求末态的扭转模型.由能量守恒.1/2JW^2=1/2MA,A为最终角.而由时间T知周期为4T,w=2pi/4T,为角频率,又知初角速度W,故A=W/w.(微分关系).带入即得M=
用积分求,
(2/5)mR^2,m为质量,R为半径.用垂直轴定理证明:以球心为原点建立空间直角坐标系,则3I=2*[(积分从0到R,打不出符号了)p*(4派r^2)*dr*r^2],其中p为密度,(4/3)派R^
这个很简单,你知道一个半径为R,质量为M的圆盘的转动惯量是1/2*MR^2,现在先假设一个半径为R的球体,以它的两条垂直的直径建立坐标系,球心为原点,现在用积分来做,假设把这个球体分割成无数个平行的圆
答:S=π×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)球体1:s=3.1415926*9.2*12.2/4=88.275平方米.球体2:s=3.1415926*10.7*13.7/4=115.
课本上的I=∫r^2dm中的r^2dm应该指的是细圆环的转动惯量,dm应该指的是细圆环的质量;而这里的I=∫2/3r^2dm中的2/3r^2dm指的是薄球壳的转动惯量,dm指的是薄球壳的质量.注意两处
J=∫∫(R*sina)^2*(m/(pi*R^2))dR*Rda(a从0到2pi,R从0到r)=∫∫(m/pi)R*(sina)^2dRda=∫(m/(2pi))r^2*(1/2)(1-cos2a)
对于一个点(零维)来说,转动惯量是MR^2,然后你可以求出一个圆环(一维)的,也是dM*r^2,r是这个圆环的半径,这里记得把M写成密度形式,dM=ρdr,dM就是圆环质量对它从0到r积分,可以求得一
球体体积:V=4PiR*R*R/3=4*3.14*236*236*236/3*2*2*2=29169.48mm3重量=体积*密度
见下图后半部分——也可看看——http://zhidao.baidu.com/question/390669271.html
这要先懂得推导圆盘的转动惯量推导圆盘的转动惯量要先知道圆圈的转动惯量圆盘的转动惯量球体转动惯量再问:最后那个没懂再问:亲?再问:能不能解释一下再答:没画图比较难说明白 你再思考一下再问:懂了
因为被积函数为定义域上的偶函数,所以积分限由-R到R变成0到R,被积函数扩大二倍最后一行是著名的牛顿莱布尼兹公式,先求出原函数,再将上下限的值带入相减就得到球体的转动惯量.再问:那请问Z是怎么求出来的
如果是实心的,I=(2/5)MR^2如果是空壳的,I=(2/3)MR^2公式可以用微积分证明,不难得
其实是用了圆盘的转动惯量公式J=1/2*m*r^2在本题就是I=∫1/2*r^2*dm而dm=pπr^2dz
是密度均匀的实心圆球吧?这你用球坐标系来积分,应该挺容易的.\x0d\x0d给你截了个图片,附送球壳的转动惯量!(点击图片可放大)\x0d\x0d
“应该是I=(1/2)M*R^2吧”是啊但是质量微元也有R平放啊(πPr^2dz)这样就是4方了你看清楚啊
空心球体是指什么,如果指球壳的话就不一样,实心球的积分区域是某一立体,所以用三重积分计算,而球壳的积分区域是闭曲面,要用曲面积分计算.但如果你说的不是球壳,那就和实心球的计算方法相同了.
这上书上没有吗?再问:书上只有结果谢谢了