求球体x² y² z²≤R²被柱面x² y²=Rx所割下部分的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:17:09
求球体x² y² z²≤R²被柱面x² y²=Rx所割下部分的体积
设一个密度均匀的半球体占有空间区域 x^2+y^2+z^2≦R^2 试求该球体质心坐标

立体关于x,y轴对称,因此质心的x,y坐标为0.只需要计算z的坐标.先计算体积(用球坐标)x=rsinucosvy=rsinusinvz=rcosu这里02pi)rcosu*r^2sinudvdudr

求锥面z=√(x^2+y^2)被柱面z^2=2x所割下部分的曲面面积

不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/

求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

设l为柱面的底,即圆(x-1)^2+(y-1)^2=1.那么设x=1+cost,y=1+sintz=x^2+y^2=(1+cost)^2+(1+sint)^2=3+2cost+2sintdl=√[(x

设柱面的淮线为:y=X^2+Z^2,y=2X,母线垂直于准线所在平面,求这柱面方程.

由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,

30分!求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A

如图:再问:你好,这个是什么软件做出来的?3dmax吗?就是说面积是14.31吧再答:忘了说明,3DMAX测量物体时,当体积为0时,其表面积是指该薄片上下两层的表面积。所以输出数据14.31,实际只是

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv

该立体投影到xoy面为x²+y²=2y,即Dxy:x²+(y-1)²=1,其极坐标方程为:r=2sinθ∫∫∫zdv=∫∫(∫[0--->2y]zrdz)drd

高数--柱面方程分别求母线平行于X轴及Y轴而且通过曲线{2x^2+y^2+z^2=16和x^2+z^-y^2=0的柱面方

求母线平行于X轴的柱面方程,只须消去两个方程中的x,得柱面方程为:3y^2-z^2=16求母线平行于y轴的柱面方程,只须消去两个方程中的y,得柱面方程为:3x^2+2z^2=16

求由抛物柱面z=2-x^2及椭圆抛物面z=x^2+ y^2围城的立体体积

体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(

高等数学求柱面方程求对称抽为x=y/2=z/3,直截面是半径为2的圆周的柱面的方程.提供思路即可,

直线L:x=y/2=z/3的方向向量为(1,2,3),过原点并且与直线L垂直的平面M方程为x+2y+3z=0;现作半径为2且过原点的球x²+y²+z²=4,平面M与球的交

求曲面x^2+y^2=z,柱面x^2+y^2=4及xoy平面所围成立体体积

所围成立体体积=∫∫(x²+y²)dxdy(所围成立体体积在xoy平面上的投影:x²+y²≤4)=∫dθ∫r²*rdr(作极坐标变换)=2π*(2^4

微积分 求柱面:x^2+y^2=a^2被平面x+z=0及x-z=0(x>0,y>0)所截部分的面积

y=√(a^2-x^2)面积S=∫∫√(1+(y'x)^2dxdy=∫(0,a)dx∫(-x,x)a/√(a^2-x^2)dz=2a∫(0,a)x/√(a^2-x^2)dx=2a*(-√(a^2-x^

求锥面z=√ (x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影.

/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=

求由柱面x^2+y^2=Rx和球面x^2+y^2+z^2=R^2所围成的立体的体积

由对称性,只需计算xy平面上方部分的体积然后乘以2即可.记D={(x,y):x^2+y^2

高等数学二重积分题目求球体X*X+Y*Y+Z*Z=4 被圆柱X*X+Y*Y=2X所截部分体积,含圆柱内的部分我只要最终结

16π/3-64/9.对如果把|sinθ|写成了sinθ,结果就是16π/3再问:那么请问到底要不要减去64/9呢?哪里要用到sinx的绝对值呢?谢谢大神^O^

求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积

∫∫(3-x-y)dxdy=∫∫(3)dxdy=3π.【关键是利用被积函数奇偶性与积分区域对称性】因为x关于x为奇函数,D关于y轴对称,所以∫∫(x)dxdy=0类似地,有∫∫(y)dxdy=0