求正交矩阵t的问题就相当于在中求一组由A得特征向量构成的标准正交基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:16:24
令A=入-2202入-1202入,要带中括号.|A|=(入-2)(入-1)入+2*2*0+0*0*2-(入-2)2*2-2*2*入-0*(入-1)*0=(入-1)(入^2-2入)-8*(入-1)=(入
求特征向量,再正交化,单位话,就得到了
[V,D]=eig(A)D是特征值,V是对应的特征向量.
这个答过|A-λE|=1-λ-11-11-λ-11-11-λr1-r3-λ0λ-11-λ-11-11-λ第1行提出λ-101-11-λ-11-11-λr2-r1,r3+r1-10101-λ-20-12
这个麻烦请稍候...再答:解:|A-λE|=1-λ242-2-λ2421-λr1-r3-3-λ03+λ2-2-λ2421-λc3+c1-3-λ002-2-λ4425-λ=-(3+λ)[(-2-λ)(5
1.若A为正交矩阵,则A^(-1)也为正交矩阵;2.若A、B为同阶正交矩阵,则AB也为正交矩阵;3.若A为正交矩阵,则det(A)=±1.
|A-λE|=-2-λ111-2-λ111-2-λ=-λ(λ+3)^2所以A的特征值为0,-3,-3AX=0的基础解系为a1=(1,1,1)^T(A+3E)X=0的基础解系为a2=(1,-1,0)^T
利用列向量的单位正交性质经济数学团队帮你解答.
设e1,e2,...,en是V的标准正交基设y=k1e1+.+knen,则(ei,y)=kiTe1=e1-2(e1,y)y=e1-2k1(k1e1+.+knen)=(1-2k1^2)e1-2k1k2e
可以的,正交矩阵的定义就是A^TA=AA^T=E可见A与A^T的地位是均等的.
从B*B^T=E可以推出B^T*B=E,但理由不是取转置,所以可以认为这个证明是错的.再问:那怎么推的啊。。我觉得推不出来啊再答:这是一个基本结论,一般教材上都有,也可以去下面的链接看http://z
因为Q若是正交矩阵,它的逆就是它的转置.这是正交矩阵的特性
利用正交矩阵的特征值的模为1,正定矩阵的特征值为大于0的实数得到B的特征值都是1正定矩阵可对角化,有B只能与E相似所以B=ET是恒等变换命题成立
qr(A,0)为“经济”方式的QR分解,该调用适用于满矩阵和稀疏矩阵.设A为大小m*n的矩阵,当m
E=1000,h=0.01,u=0.3,A=1a(1)=2,a(2)=0,a(3)=0,b(1)=-2,b(2)=2,b(3)=0,c(1)=2,c(2)=1,c(3)=1K={};forr=1:3f
1-1-1-11-1-1-11|A-λE|=1-λ-1-1-11-λ-1-1-11-λ=-(λ+1)(λ-2)^2所以A的特征值为-1,2,2解出(A+E)X=0的基础解系:a1=(1,1,1)^T解
假设一个三阶实对称矩阵,有三个特征值3,3,1,又已知对应特征值为1的特征向量(1,1,2),这个时候求特征值为3的特征向量可以直接利用正交的性质列出方程x1+x2+2x3=0求得的基础解系就是对应特
答案是肯定的.设A为正交矩阵,则AA'=E,(A^2)(A^2)'=AAA'A'=A(AA')A'=AEA'=AA'=E,因此A^2仍是一个正交矩阵.再问:谢谢啦!再答:不用谢〜