求极限limx趋向于0,1-e^3x sin2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:13:18
把1/ln(1+x)-1/x通分变成[x-ln(1+x)]/[x*ln(1+x)]当x趋于0时,上式为0比0型不定式用洛必达法则,分子分母分别求导变成:[1-1/(1+x)]/[ln(1+x)+x/(
x趋于无穷大的时候,分母x^2也趋于无穷而sin2x是值域在-1到1之间的有界函数,所以显然sin2x/x^2趋于0
lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s
lim(x->0)(exp(1)-(1+x)^(1/x))/x =lim(x->0)(exp(1)-exp(1)exp(ln(1+x)/x-1))/x =lim(x->0)exp(1)(1-exp
令u=1/x^2,则原式=lim(u→+∞)(e^u)/u=lim(u→+∞)(e^u)=+∞这里应用了洛必达法则.再问:谢了,牛
用等价无穷小替换和洛必达法则,原式=lim(x→0)(x-e^x+1)/(x(e^x-1))=lim(x→0)(x-e^x+1)/x^2=lim(x→0)(1-e^x)/(2x)=-1/2lim(x→
limx趋向0+[x^ln(1+x)]=limx趋向0+[e^(xln(1+x))]=e^limx趋向0+[(xln(1+x))]limx趋向0+(xln(1+x))=0所以limx趋向0+[x^ln
结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则
lim(x->0)[ln(1+x)]/x^2(0/0)=lim(x->0)1/[2x(x+1)]->∞
令X=1/x则原式化为klim(1+3/X)^-2X,X→∞解得klim(1+3/X)^-2X=e^(3*2)=ke^-6
下面极限下表我就省了啊,=(1+tanx)^[tanx/(xtanx)]=e^(tanx/x)=e再问:你这个是用洛必达法则做的么?有点不是很明白。再答:没有啊,这不是用罗比达法则的啊这是用我们高数数
你的解法肯定是错误的,零乘以无穷大绝对是没有直接答案的,除非对表达式变形具体做法:此极限时属于:无穷大的零次方型步骤:1、将x写成x倒数的倒数,在乘上后面的部分2、将x得倒数用一个变量t代换,所以,原
请LZ说清楚些,是tan(x^2)还是(tanx)^2再问:原式这样写。表达的应该是前者如果是后者就应该是tan^2x这样吧再答:用洛必达法则原式=(2x/cos^2(x))/(sinx+x*cosx
这是个错题.当x趋向于0-0时,1/x->-inf,1+1/x->-inf(1+1/x)的x^2为(-inf)^0型极限,没办法求.
0/0型用洛必达法则原式=lim(1-cosx)/(1-sec²x)还是0/0,继续用=limsinx/(2secx*secxtanx)=limsinx/(2/cos²x*sinx
sin(1/x)是有界的故根号[1+sin(1/x)]也是有界的无穷小乘以有界等于无穷小故原式=0再问:лл����Ȼ�����Ѿ������
再问:非常感谢能详细的解释一下吗?感觉看不大明白多谢再问:主要是第二个问题看不大明白再答:lnx=0;x-1=0;符合洛必达,可以分别分子分母求导
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
lime^(-1/x)/xt=1/xlimt*e^-t=limt/e^t=lim1/e^t=0(t趋向于正无穷)