求极限limn趋于正无穷(根号下n-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:18:34
这个直接用洛必达法则就可以啦.最后=(π/2)^2
limx*[根号(x^2+1)-x]=limx*[根号(x^2+1)-x][根号(x^2+1)+x]/[根号(x^2+1)+x]=limx/[根号(x^2+1)+x]=lim1/[根号(x^2+1)+
答案好像是0分子有界,分母趋向无穷整体趋向0
1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^
∵lim(x->+∞)[√(1+x)-√x]=lim(x->+∞)[(1+x-x)/(√(1+x)+√x)](有理化分子)=lim(x->+∞)[1/(√(1+x)+√x)]=0∴lim(x->+∞)
极限为0,不用夹逼准则,先和差化积,再用无穷小与有界变量乘积为0
对任给的ε>0(ε1/(2ε)^2,于是,取N=[1/(2ε)^2]+1,则当n>N时,有 |√(n+1)-√n|根据极限的定义,成立 lim(n→inf.)[√(n+1)-√n]=0.
lim[ln(1+x)-lnx]/x=limln[(1+x)/x]/x=limln(1+1/x)/x=0.
设f(x)=sinx/根号x,需证对任意的ε>0,存在X>0,当x>X时,恒有|f(x)-0|0,当x>X时,恒有|f(x)-0|
应该是开n次根号用夹逼定理3^n3n→+∞,n次根号2极限为1两边极限都是3所以原式=3
lim(2^n-3^n)/4^n=lim(1/2)^n-lim(3/4)^n=0-0,因为1/2
原式=lim(x→正无穷)根号(x+a)(x-b)-x=lim(x→正无穷)x[根号(1+(a-b)/x-ab/x^2)-1]因为x→正无穷所以1/x→0运用等价无穷小lim(x→正无穷)x[根号(1
(x^3+3x^2)^(1\3)-(x^4-2x^3)^(1\4)=x[(1+3\x)^(1\3)-(1-2\x)^(1\4)]1\x→0在0处泰勒公式有(1+x)^(1\m)=1+x\m+o(x)∴
设为A(以下求极限符号省略)lnA=ln(pi/2-arctanx)/lnx用L'Hospital:=[1/(pi/2-arctanx)*(-1/(x^2+1))]/(1/x)=-x/[(pi/2-a
limn趋于无穷负2的n次幂加3n次幂除以负2的n+1加3n+1次幂求极限=lim(n->∞)[-(2/3)^n+1]/[-2×(2/3)^n+3]=1/3
原式=lim(1+2+……+n)/n^2=lim[n(n+1)/2]/n^2=1/2lim(n+1)/n=1/2*lim(1+1/n)=1/2*1=1/2
正确,极限不存在(但可以表示为limx→+∞lnx=+∞)再问:对对,答案就是这个,我还以为这两者不一样呢。原来是一个意思啊--
再问:可是答案是b=1/2-ka=1为什么要让1-2b=2???再答:应该是1-2b=2k,b=1/2-k这是比较x幂的系数得到的。