f(x)=(1 x)arctan1 1-x^2,求其间断点并判断类型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:00:22
最后给出前25项的系数的数值:-ArcTan[2],2,0,-8/3,0,32/5,0,-128/7,0,512/9,0,-2048/11,0,8192/13,0,-32768/15,0,131072
都要加起始项,不然后边x→0,那么后边的式子都是无穷小了.泰勒展开式(幂级数展开法): f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*
设x=tany,则y=arctanx-x=tan-y,所以,-y=arctan-x得,arctan(-x)=-arctanx原理就是tanx是奇函数,arctan也是奇函数这个记住就行,也不是很难推有
两边取正切y=tan(x+1)
由导数定义就可以看出来.不可导点,是极值点,所以你在算求导之后得到的极值点,还有和x=1处的值进行比较,才能得出最值.不然你的计算是不完全正确的
这是因为等比数列的公比不同1/(1-x)=1+x+x^2+...+x^n+...1/(1+x)=1-x+x^2+...+(-1)^n*x^n把第二式x换成x^2就可以了
y=arctanx/(1+x²)那么y'=1/[1+x²/(1+x²)²]*[x/(1+x²)]'=(1+x²)²/[(1+x
lettana=xthenarctanx=acota=1/xarctan(1/x)=90°-aarctanx+arctan(1/x)=90°
x^2-3x+2=(x-1)(x-2)=0=>x=1,x=2x->1-,1/(x^2-3x+2)->+∞,arctan(1/x^2-3x+2)->π/2x->1+,1/(x^2-3x+2)->-∞,a
此题是求当X趋于无穷大时函数的极限.此时arctan这一部分为四分之π,前面的是等价无穷小,为1-1/x^2,等于一.水平渐进线为y=1.
y'=1/[1+(1/x)^2]*(1/x)'=x^2/(1+x^2)*(-1/x^2)=-1/(1+x^2)
利用已知幂级数1/(1+x)=Σ(n=0~∞)[(-1)^n](x^n),-1
鐢∕APLE瑙Ⅻbr/>>fsolve(arctan(x/12)-arctan(x/10)-arctan(x/20)=-40/180*Pi);13.96972563鐢∕ATLAB瑙Ⅻbr/>濂介夯鐑︾
y'=1/[1+(x^2+1)^2]×(x^2+1)'=2x/(x^4+2x^2+2)再问:
tan(arctanx+arctanp)=[tanarctanx+tanarctanp]/[1-(tanarctanx)(tanarctanp)]=(x+p)/(1-xp)这就是公式.
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(arctan(1-x)+arctan(1+x))=(1-x+1+x)/(1-(1-x)(1+x))=2/x^2arctan(1
应该是说:tan[-arctan(-x)]=tan[-π+arctanx]等于再问:不加tan就不对了是么?再答:不加不对,
此题复合求导dy=d[arctan(1-x/1+x)]=[1/(1+(1-x/1+x)^2)]·(1-x/1+x)';注:(arctanx)'=1/(1+x^2)=-(1/(x^2+1))
y=arctanx+1\x-1y'=1/[1+(x+1\x-1)^2]*(x+1\x-1)'=1/[1+(x+1\x-1)^2]*(-2)/(x-1)^2=-1/(1+x^2)
此题是这样的吧:函数y=arctan[(1+x)/(1-x)]?若是这样,y′=1/[1+(1+x)²/(1-x)²][(1-x)+(1+x)]/(1-x)²=2/[(1