求极限lim(n→∞)(1 根号n^2 1······1 根号n^2 n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:56:17
求极限lim(n→∞)(1 根号n^2 1······1 根号n^2 n)
求极限lim(n→∞)

直接写.就是零,这题不需要过程.你要是非要写,就把它拆开变成两项,然后等于零加零

求极限lim(n→∞)(1/根号n^2+1······1/根号n^2+n)

利用夹逼准则,每项的分母可以放大成√(n²+n)缩小成√(n²+1)之后发现两边极限相等为1故原极限为1 具体解题步骤如下 

求lim(n→无穷)(根号(n+1)-根号n)*根号n 的极限

分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2

求lim(根号下n+1)-(根号下n),n趋于无穷大的极限

√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1

求极限lim(n→无穷) (三次根号下n^2)*sin /(n+1)

原式=limn^(2/3)/(n+1)*sinn!=(对左边那个分子分母除以n)limn(-1/3)/(1+1/n)*sinn!这样就写了一个无穷小量乘以有界量的形式所以极限是0

求极限lim(n→无穷大)sin[根号下(n^2+1)]*π (π在根号外面)

利用三角函数诱导公式加一项,再分子有理化,过程如下:lim(n→无穷大)sin[根号下(n^2+1)]*π=-lim(n→无穷大)sin{[根号下(n^2+1)]-n}*π=-lim(n→无穷大)si

求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =

3.原式=lim(n→∞)[根号(n^2+4n+5)-(n+2)+3],然后把3放一边对前两项进行分子有理化.=lim(n→∞)1/[根号(n^2+4n+5)+(n+2)]加一个与世隔绝的3=0+3=

求极限 lim(n无穷)n【(根号(n^2+1)-根号(n^2-1)】

n[√(n²+1)-√(n²-1)]=n[√(n²+1)-√(n²-1)][√(n²+1)+√(n²-1)]/[√(n²+1)+√

求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n

设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(

求极限lim n→∞ 根号n乘以sin n 除以n+1

用无穷小量分出法:分子和分母同除以n,则有,此时分子:根号n分之1是无穷小量,而sinn是有界函数,无穷小量与有界函数的乘积还是无穷小量,所以分子极限是零.此时分母:1+1/n,其中1/n是无穷小量,

求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)

n→+∞时[a^n+(-b)^n]/[a^(n+1)+(-b)^(n+1)]={[1+(-b/a)^n]/[a-b(-b/a)^n]→1/a,|a|>|b|;.{[(-a/b)^n+1]/[a(-a/

求极限lim n→0 (根号下1-cosx)/sinx

1-cosx=1-(1-2sin²x/2)=2sin²x/2所以x→0-原式=lim-√2*sin(x/2)/(2sin(x/2)cos(x/2))=lim-√2/(2cos(x/

求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)

[2^(n+1)+3^(n+1)]/[2^n+3^n]=[2*2^n+3*3^2]/[2^n+3^n]=[2*2^n+2*3^2+3^n]/[2^n+3^n]=2+3^n/[2^n+3^n]lim2+

lim(n→∞) 根号n+1 +根号n 的极限是多少

题目没抄错的话你认为结果是多少呢?不明显是无穷大的吗,这点数学头脑都没有?!个人认为原题应该是求:lim(n→∞)根号n+1-根号n的极限是多少这样的话,给(根号n+1-根号n)乘以(根号n+1+根号

lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限

不等式两边夹答案是3再问:能不能细点再答:3=

求下列数列极限,lim ([根号下n的平方+1]-n) n→∞

[√(n²+1)-n]=====>>>>>分子有理化=1/[√(n²+1)+n]→0这个极限是0

求极限n~∞,lim(n+1)/2n

再答:我的答案,望采纳!