求极限:lim x^3-3x 2 x^3-x^2-x 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:34:12
再问:但我书上的答案是e^(-6)再答:再问:我题目抄错了再问:谢谢啊!大神再问:limx趋于1[(x^2)-1/(x^3)+1]这个你知道怎么做吗?
/>因为lim【x→1】2x+3=2×1+3=5lim【x→1】(x-1)/(2x+3)=(1-1)/(2×1+3)=0所以lim【x→1】(2x+3)/(x-1)=∞答案:∞
limx→∞[(3x-1)/(3x+4)]^(x+1)=limx→∞[1-5/(3x+4)]^[(3x+4)/5*5/3+1/3]=limx→∞[1-5/(3x+4)]^[-(3x+4)/5]^[-5
分子分母同时除以x^2然后得3/4
[(3x+4)/(3x-1)]^(x+1)=[1+5/(3x-1)]^(x+1)=[1+5/(3x-1)]^(x-1/3)*[1+5/(3x-1)]^(4/3)=[1+5/(3x-1)]^(4/3)*
原式=(x-1)(x-2)/(x+4)(x-1)=(x-2)/(x+4)所以极限=(1-2)/(1+4)=-1/5
分子分母同时趋于正无穷,故用洛必达法则,分子分母同时求导,则原式=limx趋于正无穷,2x/3e的3x次方,发现分子分母还是同时趋于正无穷,再用一次罗比达法则原式=limx趋于正无穷,2/9e的3x次
上下除以x²limx→∞(x^2+3x-1)/(3x^2-2x+4)=limx→∞(1+3/x-1/x²)/(3-2/x+4/x²)x在分母的都趋于0所以=1/3
x→0limx^3/(x-sinx)该极限为0/0型,根据L'Hospital法则=lim(x^3)'/(x-sinx)'=lim(3x^2)/(1-cosx)根据等价无穷小:1-cosx~x^2/2
再问:第一题不对!答案是a=b=-4再答:你用照片把题目发过来,好吗?再问:再问:第2题再答:然后你把值代入原式再算一下。再问:哦!好的谢谢再答:客气了。
设t=2x+3,x=(t-3)/2,x→∞,t→∞,原式=lim[t→∞][(t-1)/t]^(t-3)/2=lim[t→∞][(1-1/t]^(t-3)/2设u=-1/t,t=-1/u,t→∞,u→
lim{x->3}[√(1+x)-2]/sin(x-3)=lim{x->3}{1/[2√(1+x)]}/cos(x-3)=[1/(2*2)]/1=1/4
极限不存在要极限存在必须左右极限相等limx->3-x/[(x-3)(x+3)]=-无穷,因为分母是趋向0-,3/0-->-无穷limx->3+x/[(x-3)(x+3)]=+无穷,因为分母是趋向0+
应该是limx→0(tanx-x)/x^3(tanx-x)/x^3=(sinx/cosx-x)/x^3=(sinx-xcosx)/x^3cosxx→0,cosx→1;所以limx→0(tanx-x)/
用洛必达法则分数线上下同时求导两次,再由x-0时sinx~x就出答案了原式=limx-01-cosx/3x^2=limx-0sinx/6x=1/6
第二题用的是第二个重要极限. 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
lim(x->0)√(x-1)(x-2)=lim(x->0)=2
1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-
是(arctanx-x)/x^3吧.用泰勒公式做,答案是-1