求极限 limx→1(x²-2x 1) (x-1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:35:21
/>因为lim【x→1】2x+3=2×1+3=5lim【x→1】(x-1)/(2x+3)=(1-1)/(2×1+3)=0所以lim【x→1】(2x+3)/(x-1)=∞答案:∞
原式=limx→∞[1-4/(2x+1)]^(x+1)=limx→∞[1+1/(-x/2-1/4)]^[(-x/2-1/4)*(-2)+1/2]=e^(-2)
x→+∞lim√(x^2+x+1)-√(x^2-x-3)=lim(√(x^2+x+1)-√(x^2-x-3))(√(x^2+x+1)+√(x^2-x-3))/(√(x^2+x+1)+√(x^2-x-3
limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.
先取对数原式化为lim(x-->0)ln[(x+e^2x-1)+1]/x=lim(x-->0)[e^2x-1+x]/x=lim(x-->0)e^2x-1/x+lim(x-->0)x/x=3所以原极限就
分子分母同时除以x^2然后得3/4
上下除以x²limx→∞(x^2+3x-1)/(3x^2-2x+4)=limx→∞(1+3/x-1/x²)/(3-2/x+4/x²)x在分母的都趋于0所以=1/3
利用洛比达法则limx^(1/2)lnx=limlnx/x^(-1/2)=lim(1/x)/(-1/2)x^(-3/2)=-1/2*limx^(1/2)=0
再问:第二步怎么到第三步的再答:第一个式子上下同时除x再答:后面的式子值为1
当x趋近于1时,1/(x-1)趋近于无穷,但(x^2-1)/(x-1)的收敛速度没有e^[1/(x-1)]的收敛速度快,所以最后的极限取决于e^[1/(x-1)].当x趋近于1+时,1/(x-1)趋近
先取自然对数limx->0ln(sinx/x)^(1/x^2)=limx->0(lnsinx-lnx)/x^2(这是0/0型,运用洛必达法则)=limx->0(cosx/sinx-1/x)/2x=li
法一:该极限为0/0型,用洛必达法则,分子分母同时对X求导limx→1【nx^(n-1)/1)】=n法二:妙用等比数列求和公式(x^n-1)/(x-1)=1+x+x^2+…………+x^(n-1),x≠
第二题用的是第二个重要极限. 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
求极限x→1lim[√(3-x)-√(1-x)]/(x²+x-2)原式=∞求极限x→1lim[√(3-x)-√(1+x)]/(x²+x-2)【0/0型,用洛必达法则】原式=x→1l
=e^lim(1/sin²x)·lncosx=e^lim(cosx-1)/x²=e^lim-(1/2)x²/x²=e^-(1/2)
1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-
替换原则:(1)首先要保证当x趋于某一个常数时,函数是无穷小量(2)加减不能替换,乘除能替换;(3)看代换后四则运算下来的最小量的阶是否与分母可比 &nb