求曲面积分的内外侧有什么区别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:32:50
只有一型曲线积分和曲面积分才能求曲面面积二重积分也能求曲面面积么?哪里听来的?
二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积..三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量..第一
因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住
平面区域:是在一个封闭的边界内填充一个平面(可以看出填充曲面的特例),由于是填充一个平面,所以边界就必须位于一个平面上.填充曲面:顾名思义,就是在一个闭合的边界内,填充一个曲面,当有2个边界时可以用放
区别在于不定积分得出来的是一个函数+c,定积分得出来的是一个函数的具体的值
电脑都看不清楚.你答出来撒!再问:y^2dydz+yz^2dxdz+zx^2dxdyS为椭球面x^2/a^2+y^2/b^2+z^2/c^2=1的外侧手机像素拙计==求各位大大见谅再答:我只给你一个提
看这结果对不?
我的认识:造型是有三角形,放样,四边混成,它的混成可以是一个方向的,边界是两个方向的混成,不对的,请大家指教[]查看原帖
高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω
答案是4πR^2,把积分区域的函数带入,就是一个被积函数为常数的积分了,乘以积分曲面的面积就好再问:你的答案不对再答:答案是多少再问:4兀再答:你把R等于1就是答案了,我想的是半径为R,是我疏忽了再问
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
这个锥面没有盖吗?补上平面S:z=h,上侧∫∫(Σ+S)(x²+zx)dydz+(y²+xy)dzdx+(z²+yz)dxdy=∫∫∫Ω[(2x+z)+(2y+x)+(2
S为XOY面内,曲面积分与二重积分本质上没有区别,两者完全一样;S在3D内,一般情况下,一切曲面积分都要转换成二重积分计算(这主要是说不考虑使用其他转换,如高斯、格林什么的),就是把3D降成2D,如X
二重积分算的是平面区域定义域的面积再答:而曲面积分可以计算三维曲面面积再答:也就是说二重积分最多就只能计算平面闭区域的面积,而曲面积分可以算三维曲面面积,例如球表面面积再答:希望采纳,欢迎追问再答:希
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
推荐:这是一个PPT.希望对你有帮助,呵呵...http://www.baidu.com/s?tn=baidu&ie=gb2312&bs=%CE%D2%C3%C7%B3%C6%D6%AE%CE%AA%