求曲面积分(y-z)dx (z-x)dy (x-y)dz,x^2 y^2=a^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:43:54
z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
三个变量,两个方程,所以任何一个变量都能表示其余两个变量,偏微分可以写成微分 对f求x的偏微分,=>其中fi分别是f对第i个未知数的偏导数对g求x的偏微分,=>
直接套高斯公式,然后用柱坐标变换,将积分区域化为-R再问:不行吧,高斯公式要求有一阶连续偏导数,可是它在原点不可导阿,不能直接用高斯公式吧,我看网上有人弄出了x^2y^2z^2=2R^2,然后就把分母
圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2
稍等再答:再答:降三重积分为二重积分最简单。
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
可能是你的哪里算漏了吧
这个锥面没有盖吗?补上平面S:z=h,上侧∫∫(Σ+S)(x²+zx)dydz+(y²+xy)dzdx+(z²+yz)dxdy=∫∫∫Ω[(2x+z)+(2y+x)+(2
球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
根据斯托克斯,将曲线积分转换成曲面积分本题如图:所交曲线L: &nbs
楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x
结果是-14/15,伙计,你对y轴积分的时候肯定积分错误了.我们来看,前半部∫L(x^2-2xy)dx=2/3,后半部分你肯定积分错误了.你是不是将y=x^2代入了∫(y²-2xy)dy中变
消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17
∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y