求曲面zdxdy为球面x² y² z²=1在第一卦限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:38:50
为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部
dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
可以直接使用高斯公式:没问题的话麻烦采纳吧,/
①.∫(2x+z)dydz中在dydz平面,要置换x=±√(z-y²),z保留,所以=∫(2√(z-y²)+z)(-dydz)至于(-dydz)中符号是因为区域S取后侧方向;②.后
原式=∫∫∫(αP/αx+αQ/αy+αR/αz)dxdydz=∫∫∫(x²+y²+z²)dxdydz=∫dθ∫sinφdφ∫r^4dr(你错在这儿,第二个积分限是)=(
令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α
为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分
伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫
补上两个面z=0与z=h,三个面上用高斯公式,得πh^3,z=0上的积分是0,z=h上的积分是πh^3,所以结果是0再问:为什么要补上z=0,根本没有用啊,这是圆锥面啊再答:那倒是,不用加再问:而且z
嘿嘿,这里就是考你会不会区别面积分和重积分的地方了.面积分的被积函数是建构在曲面方程上的,x²+y²+z²=a²,只包含方程的部分积分域:{x,y,z|Σ:x&
这道题目打错了.y=y*sinv,应该是y=u*sinv方法是将其转化为第一型曲面积分.写为(Pcosa+Qcosb+Rcosy)ds的形式,然后用参数方程改写它.关键是写出参数方程下s的法向量以及d
球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π