求曲线y=x^2-1与y=x 1所围成的面积绕x轴旋转的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:56:06
求曲线y=x^2-1与y=x 1所围成的面积绕x轴旋转的体积
已知曲线y=x^3+2x-1,求过点p(0,1)与曲线相切的曲线方程.

这个问题简单哦y'=3x^2+2当x=0时.得K=2又过(0,1)得切线方程y=2x+1完毕给分

求与y=2x+1平行的曲线y=x+lnx的切线方程

平行则斜率k=2即y'=1+1/x=2x=1y=1+ln1=1切点是(1,1)所以是2x-y-1=0

求与函数y=e^2x-2e^x+1的曲线关于直线y=x对称的曲线的函数解析式

y=e^2x-2e^x+1=(e^x-1)^2x>=0e^x-1=ye^x=y+1x=ln(y+1)y=ln(x+1)x=0时,是y=ln(x+1)当x

y=x^2+1/x求曲线的凹凸区间与拐点

函数 的定义域是x不等于0的所有实数.y'=2x-1/x^2y''=2+2/x^3令y''=0解得x=-1,当x0,所以曲线y=f(x)在(-无穷,-1)上是凹的,当-1

求y=ln(1+x^2)曲线的凹凸区间与拐点?

y=ln(1+x²)定义域为Ry'=2x/(1+x²)=0y"=2(1-x²)/(1+x²)²令y"=0得x=±1当x∈(-∞,-1),y"

求曲线X^y次方=X^2*Y在点(1,1)处的切线方程与法线方程.

取对数得ylnx=2lnx+lny,求导得y'*lnx+y/x=2/x+y'/y,令x=y=1,可解得k=y'=-1,所以,切线方程为y-1=-(x-1),化简得x+y-2=0,法线方程为y-1=x-

求过点(1,-3)且与曲线y=x^2相切的直线方程

y=x^2y'=2x设切点为(a,a^2),则切线为y=2a(x-a)+a^2=2ax-a^2代入点(1,-3),-3=2a-a^2即a^2-2a-3=0(a-3)(a+1)=0a=3,-1故直线有两

已知曲线参数方程,x=2cosa y=4cosa p是上一点.p(x1,y1) 求(x1+y1,x1-y1)的轨迹.

x1=2cosay1=4sina设那点是Q则A(2cosa+4sina,2cosa-4sina)x=2cosa+4sinay=2cosa-4sina所以x+y=4cosax-y=8sinasin&su

若动点P(x1,y1)在曲线y=2x^2+1上 移动,则P与点(0,-1)连线的中点的轨迹方程

设中点为Q(a,b),则因为点Q是点P与点(0,-1)连线的中点所以点P的坐标为(2a.2b+1)又因为点P在曲线上所以带入得8a^2+1=2b+1所以点Q的轨迹方程y=4x^2

高二定积分问题!急!1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.2、求曲线y^2=2x与直线y=x-4

1、计算曲线y=x^2-2x+3与直线y=x+3所围成的面积.y=x^2-2x+3=(x-1)^2+2y最小值为2将x轴向上平移2个单位y变化y+2,则两个函数化为y=(x-1)^2y=x+1求二者交

求曲线C:y=-x^2+2x-2关于直线y=x+1对称的曲线方程

求任意曲线关于直线y=kx+b对称的的曲线方程,如果K=1或-1有个超级简单的办法.如y=x+1就吧y=x+1和x=y-1代入原来的方程.得到x+1=-(y-1)²+2(y-1)-2(还没化

函数y=f(x)在x1处可导,且f'(x1)=2,则曲线y=f(x)在点[x1,f(x)]切线与x轴是什么关系 平行还是

你的问题应该是曲线y=f(x)在点[x1,f(x1)]处切线与x轴的关系是什么,答案是.由于f'(x1)=2.所以y=f(x)在点[x1,f(x1)]处的斜率是2从而求出与x轴的关系是.与x轴的夹角为

求曲线y=1/x与曲线y=√x的交点坐标,并分别求出两曲线在交点处的切线的斜率

将两个曲线联立求解不就好了吗,也就是1/x=√x,解得x=1,所以y=1,这样的话,交点坐标就是(1,1)至于切线斜率,你们应该学过导数了吧,求导函数就ok了(导函数的值就是该点切线的斜率),y=1/

求曲线y=1/x与曲线y=根号下x的交点坐标,并分别求出两曲线在交点处的切线的斜率

y=1/x,y=根号下xx=1,y=1交点(1,1)曲线y=1/x斜率:k=-1曲线y=根号下x:k=0.5

求:曲线y=x^2与y=2所围成图形的面积?

∵曲线y=x^2与y=2所围成图形是关于y轴对称(图形自己画)∴所围成图形的面积=2∫√ydy=[2*(2/3)*y^(3/2)]│=(4/3)*2^(3/2)=8√2/3.

求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积

y=x^2和x=1相交于(1,1)点,绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5.绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)

求过点(1,-1)与曲线y= x^3-2x相切的直线方程.2.求曲线y=x^2在点

y'=3x^2-2  y'(1)=3-2=1因此由点斜式得切线方程为y=1*(x-1)-1=x-22.y'=2xy'(1)=2因此在点(1,1)的切

已知曲线y=x平方 与曲线y=-(x-2)平方 求与两曲线均相切的直线方程

y1=x^2,y1'=2x;y2=-(x-2)^2,y2'=-2(x-2)=4-2x设此直线与曲线1相切于点(m,n),与曲线2相切于点(p,q),且此直线斜率为k则有2m=k,4-2p=k,即m+p

y=kx+1与曲线2x^2-y^2=1只有一个交点,求k的值

由题目可知:曲线2x^2-y^2=1与X轴相交.∴Y=0时,X=±√2/2y=kx+1当Y=0时,X=±√2/2∴K=±√2