求曲线y x2及直线y=2-x2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:09:37
y'=2cosx+2xx=0,y=0,切点(0,0)y'=2,即切线斜率是2,所以法线斜率是-1/2所以切线是2x-y=0法线是x+2y=0
由y=x2y=x得交点坐标(0,0),(1,1),由y=x2y=2x得交点坐标(0,0),(2,4),…(2分)∴所求面积S为S=∫10(2x−x)dx+∫21(2x−x2)dx…(6分)=∫10xd
在同一直角坐标系下作出曲线y=x2,直线y=x,y=2x的图象,所求面积为图中阴影部分的面积.解方程组y=x2y=x,得交点(0,0),(1,1),解方程组y=x2y=2x得交点(0,0),(2,4)
因为曲线y=X2(2为平方)关于直线y=x的对称曲线方程是它的反函数,所以曲线y=X2(2为平方)关于直线y=x+1的对称曲线方程就是原方程的反函数图象向上平移一个单位再向左平移一个单位,即为y=(x
再问:X>=0再答:做的是x大于等于0
由积分的知识有:S=积分(0,2)x^2dx=1/3x^3|(0,2)=1/3*2^3=8/3
定积分的几何意义:就是在区间[a,b]内切分n份,n趋于正无穷,来计算小长方形面积之和.即直线X=0,X=2,y=0与曲线y=x^2所围成的曲边梯形的面积为y=x^2在[0,2]的定积分.即S=∫x^
在曲线y=x^2+3上取点(t,t^2+3)此点到直线的距离为d=|t-t^2-1|/(根号2)=(t^2-t+1)/(根号2).易知分子的最小值为3/4故d的最小值为3(根号2)/8
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
解方程组y=x2y=2x+3得交点横坐标x1=−1,x2=3,所求图形的面积为S=∫3−1(2x+3−x2)dx=∫3−1(2x+3)dx−∫3−1x2dx=(x2+3x)|3−1−x33|3−1=3
由图形的对称性知,所求图形面积为位于y轴右侧图形面积的2倍.由y=−x2y=−1得C(1,-1).同理得D(2,-1).∴所求图形的面积S=2{∫10[−x24−(−x2)]dx+∫21[−x24−(
设P1(x1,y1),P2(x2,y2)为两曲线交点,则P1(x1,y1)适合曲线方程,有为消去二次项,①×3-②得7x1-4y1=0③同理,P2(x2,y2)适合曲线方程,消去二次项得7x2-4y2
求垂直于直线2x-6y+1=0说明被求直线斜率为-3对曲线y=x3+3x2-5求导y'=3x^2+6x=-3可解得x=-1,y=-3所以直线方程为y+3=-3(x+1)即y=-3x-6
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
答:点(-1,0),y=x^2+x+1,该点不在曲线上设切点为(a,a^2+a+1)在曲线上y对x求导得:y'(x)=2x+1切线斜率k=y'(a)=2a+1所以:k=2a+1=(a^2+a+1-0)
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,
由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2
联立y=x−2y=−x2,得x1=-2,x2=1.所以,A=∫−21(x−2)dx−∫−21(−x2)dx=(x22−2x)|1−2+13x3| 1−2=−92,故所求面积s=92.
设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0 ①∵直线l与C2:y=-(x-2)2相切得