求曲线x=t,y=tsint,z=tcost在点P(的切线方程和法平面方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:35:58
求曲线x=t,y=tsint,z=tcost在点P(的切线方程和法平面方程
圆的参数方程问题曲线C的参数方程为x=-2+cosa,y=sina,p(x,y)是曲线C上任意一点,t=y/x ,求t

根据参数方程可知圆的圆心和半径,再从原点向此圆引两条切线的斜率便是t的两个极值如果圆心在圆内那没什么好说了

三维曲线 曲率如果一条曲线方程为:x=x(t),y=y(t),z=z(t);则曲线的曲率如何求?请尽量详细点.

***楼主看这里,不是复制粘贴的哦***第一步:分别求导,得到x'(t)y'(t)z'(t)第二步:分别求2阶导,得到x''(t)y''(t)z''(t)第三步将三个一阶导合在一起看做一个三维矢量r'

星行曲线,x=acos^3t,y=asin^3t,求曲线所围成的面积?

理论上可以.先化为极坐标表示:p=a*(sin^6t+cos^6t)^(1/2),在积分.面积S=p^2(t)dt(积分上下限为2PI,0),不过这样积分更复杂.再问:能提供解题答案吗极坐标的我解的不

求曲线参数的切线方程求曲线x=2e^t y=-e^t在t=0对应处的方程

dx/dt=2e^tdy/dt=-e^ty'=-e^t/(2e^t)=-1/2x(0)=2y(0)=-1所以t=0处的切线方程为:y=-1/2*(x-2)-1=-x/2

曲线方程 x=t+1+sint y=t+cost 求曲线在x=1处的切线方程 (要过程 谢谢)

因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1

参数方程x=t(1-cost)与y=tsint确定的函数的导数 求答案!谢谢

dy/dx=y'(t)/x'(t)=(sint+tcost)/(1-cost+tsint)再问:要过程谢谢再答:dy=y'(t)dt.dx=x'(t)dt=>dy/dx=y'(t)/x'(t)

曲线参数方程{x=3t^2+2 y=t^2-1 (t为参数)是什麽曲线?

t^2=(x-2)/3=y+1x-3y-5=0t^2>=0所以(x-2)/3>=0,x>=2y+1>=0,y>=-1所以不是整条直线而是(2,1)右边的部分所以是一条射线

设曲线x=x(t),y=y(t)由方程组x=te^t e^t+e^y=2e 确定,求该曲线在t=1处的曲率k.答案是k=

汗,参数方程的曲率啊,直接代公式就可以了再问:是的不假,但是我怎么算的都是答案的3背呢,多个常数倍数3……我就绕进去出不来了…………再答:也许是答案错误了。再问:………………汗…………因为之前有过类似

给出参数方程的曲线方程 y=y(t),x=x(t),过线上一点x0,y0的切线方程怎么求,

求导,切线的斜率dy/dx=(dy/dt)/(dx/dt),然后用点斜式即可.

求曲线x=t,y=t^2,z=t^3上与平面x+2y+z=1平行的切线方程

平面x+2y+z=1的法线方向{1,2,1}曲线x=t,y=t^2,z=t^3在t的切线方向{1,2t,3t²}.平面‖切线↔法线⊥切线.∴平面‖切线↔1*1+2*2

要有具体过程求曲线x=a(cost+tsint),y=a(sint-tcost),(0≤t≤)的长度L 这题我知道是用弧

x=a(cost+tsint),y=a(sint-tcost)L=∫√(dx²+dy²)dx=atcostdtdy=atsintdt=∫at√((cos²t+sin&su

f(t)= tsint 的拉氏变换

答案:2*s/(s^2+1)^2

设(X=TCOST,Y=TSINT,求DY/DX

先求dx=(cost-tsint)dt,dy=(sint+tcost)dt然后dy/dx=(sint+tcost)/(cost-tsint)根据x=tcost;y=tsint;y/x=tant所以dy

1、求曲线y=1/x²在点(1,1)的切线方程.2、求曲线x=1+t²,y=t³在t=2处

1,y'=-2/x^3、y'(1)=-2,则切线的斜率为-2.由点斜式可得切线方程为:y-1=-2(x-1),即2x+y-3=0.2,dx=2tdt、dy=3t^2dt.y'=dy/dx=2/(3t)

x=a(cost+tsint) y=a(sint—tcost) 求导dy/dx

解析x=acost+atsinty=asint-atcostdx=-asint+asint+atcostdy=acost-acost+atsint∴dy/dx=(acost-acost+asint)/

对坐标的曲线积分曲线在点(X,Y)处的线密度为p=|Y|,求曲线X=acost,Y=bsint(0<t<2兀,0<b<a

所求质量M=∫[0,2π]|bsint|√[(-asint)²+(bcost)²]dt=∫[0,2π]|bsint|√[a²+(b²-a²)cos&#

设函数f(x)由参数方程x=lnsint,y=cost + tsint-π/12 (0

没错啊,dx/dt=cost/sint楼主可以把题目拍下来吗?再问:您看下红笔写的是标准答案黑色是我写的再答:答案是不是这个

求曲线积分∫(x+y)ds,其中L为曲线弧x=t,y=t^3,z=3t^2/√2(0<t<1)

尻,这么容易,照代不就行咯ds=√[(dx)^2+(dy)^2+(dz)^2]

L为参数方程x=cost+tsint y=sint-tcost 求曲线积分x+e^xdy+(y+ye^x)dx t为0到

x,y随t增减趋势,大致画出图像是从A(1,0) 沿着逆时针到B(1,-2π)的一段曲线..设原题目中P=y+ye^x,Q=x+e^x因为Q'x=P'y,所以原积分与路径无关