求曲线x=t y=1-cost 在T=π 2处的切线和法线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:47:33
f'(x)=2x因为(x^2+c)"=2x,其中c是常数所以f(x)=x^2+c过(1,0)0=1^2+c所以f(x)=x^2-1
由题意,t=11−x,代入y=1-t2,可得y=x(x−2)(x−1)2(x≠1).故答案为:y=x(x−2)(x−1)2(x≠1).
t是什么?是θ吧?x=rcosθy=rsinθdy/dx=(sinθdr+rcosθdθ)/(cosθdr-rsinθdθ)将θ=2pi/3、r=0.5、dr=d(1+cosθ)=-sinθdθ代入有
x'=-sint,y'=cost,z'=(sect)的平方(0,1,1)对应的t=π/2,T=(-1,0,1)切线方程:(x-0)/(-1)=(y-1)/0=(z-1)/1发平面:-x-(z-1)=0
∵x'(π/4)=-√2/2,y'(π/4)=√2/2,z'(π/4)=2∴所求切线方程是(x-√2/2)/(-√2/2)=(y-√2/2)/(√2/2)=(z-π/2)/(2)所求法平面方程是(-√
因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1
曲线C1的极坐标方程为ρcos2θ=sinθ,普通方程为:y=x2,曲线C2的参数方程为x=3−ty=1−t(t为参数),的普通方程为:x-y-2=0.与直线平行的直线与抛物线相切时,切点到直线的距离
曲线C的参数方程x=2+ty=t+1化为普通方程是x-y-1=0,曲线P的极坐标方程ρ2-4ρcosθ+3=0化为普通方程是(x-2)2+y2=1,它表示圆心在(2,0),半径r=1的圆,∴圆心到直线
由对称性,S=4∫(0→a)ydx=4∫(π/2→0)a(sint)^3d[a(cost)^3]=12a^2×∫(0→π/2)(sint)^4×(cost)^2dt=12a^2×∫(0→π/2)[(s
y=e^ty+xy-x=e^tyty=ln(y-x)t=ln(y-x)/y平方得t²=ln²(y-x)/y²(1+x²-y²)y²=ln
f(x)=1/x求导f'(x)=-1/x^2f'(1)=-1f(1)=1所以y=-x+2设切点(x0,1/x0)则切线y-1/x0=(-1/x0^2)(x-x0)代入(1,0)x0=1/2所以y-2=
首先求导数y'=1/(2根号x)所以切线斜率为1/2根号4=1/4故法线斜率为-4所以切线方程为y-2=1/4(x-4)法线方程为:y-2=-4(x-4)你自己在化简一下就行了
(I)曲线C1的参数方程式x=4+5costy=5+5sint(t为参数),得(x-4)^2+(y-5)^2=25即为圆C1的普通方程,即x^2+y^2-8x-10y+16=0.将x=ρcosθ,y=
dx/dt=coste^t+sinte^tdy/dt=-sinte^t+coste^t所以dy/dx=(dy/dt)/(dx/dt)=(-sint+cost)/(cost+sint)当t=0时,dy/
应该就是y=kx+b,这是一次函数代数式,求k的只有两种,一种代入两点求解,一种是斜率,带入坐标求点:(0,-3)与点(1,0)代入直线Y=KX+B中解得Y=3X-3,斜率是K=tanα(与X轴,y轴
曲线C的极坐标方程为ρ=4cosθ,化为ρ2=4ρcosθ,化为x2+y2=4x,配方为(x-2)2+y2=4,其圆心C(2,0),半径r=2.由直线x=−1+ty=2t消去参数t可得y=2x+2.∴
1TR=PQ=Q(100-Q)/2MR=50-QMR=MC50-Q=2QQ=50/3P=(100-50/3)/2=125/32Q'=-2e=-2*[125/3/(50/3)]=-53.完全竞争市场Q=
直接求导,根据导数也就是微商的定义y'=dy/dx=(dy/dt)/(dx/dt)=-sint/cost=-tgt当t=Pi/4时,y'=-tgt=-1,并且曲线过点(sqrt2/2,sqrt2/2)
x,y随t增减趋势,大致画出图像是从A(1,0) 沿着逆时针到B(1,-2π)的一段曲线..设原题目中P=y+ye^x,Q=x+e^x因为Q'x=P'y,所以原积分与路径无关