求曲线sin(xy) ln(y–x)=x在点(0,1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:06:21
求曲线sin(xy) ln(y–x)=x在点(0,1)
设y是由方程sin(xy)+ln(y-x)=x所确定的x的函数,求dy/dx|x=0得多少 求详细过程为什么是1 我算是

sin(xy)+ln(y-x)=x两边同时对x求导得:cos(xy)·(y+xy')+(y'-1)/(y-x)=1①当x=0时,sin0-lny=0,解得y=1把x=0,y=1代入①得:cos0·(1

求曲线y=ln(secx)点(x,y) 处的曲率.

y'=tanx,y''=sec^2xK=|y''|/√(1+y'^2)^3=sec^2x/|sec^3x|=|cosx|再问:有一点看不懂,那个K=的第二个等号怎么化的?再答:1+tan^2x=sec

y/x=ln(xy) 求详 dy/dx

方法一(微分法)d(y/x)=d(ln(xy))(xdy-ydx)/x²=1/xy*d(xy)即(xdy-ydx)/x²=(ydx+xdy)/xy∴dy/dx=(xy+y²

y/x=ln(xy) 求dy/dx

两边求导(y'x-y)/x^2=(y+xy')/xyxy+x^2y'=xyy'+y^2y'=(xy-y^2)/(xy+x^2)

求曲线y=ln(e-1/x)的渐近线

两条渐近线,一条是x=1/e,另一条是y=1

y(x)是由方程xy=ln(x+y)确定的隐函数 求dy

两边对x求导得y+xy'=(1+y')/(x+y)y(x+y)+x(x+y)y'=1+y'y'[x(x+y)-1]=1-y(x+y)y'=[1-y(x+y)]/[x(x+y)-1]dy=[1-y(x+

求曲线y=ln(secx)在点(x,y) 处的曲率.

由曲率公式:K=|y"|/(1+y'^2)^3/2,因此,先求出函数的一阶、二阶导数.y'=ln(secx)'=(1/secx)(secx)'=secxtanx/secx=tanx,y"=(tanx)

求方程xy''=y'ln(y'/x)的通解

设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C

已知直线y=kx是曲线y=ln=x的切线,求k

y=lnxy'=1/x曲线y=lnx在点(a,lna)处的切线的斜率为:k=1/a,直线y=kx是曲线y=lnx的切线,则;lna=1/a*a=1,a=e,k=1/a=1/e.

x/y=ln(xy)求隐函数y的导数dy/dx

直接两边对x求导,得1/y*(-1/y2)*dy/dx=1/xy*(y+xdy/dx)下面会了吧

设sin(x+y)=xy,求dy/dx.

cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]

做适当变换,求微分方程xy-y[ln(xy)-1]=0的通解.

这不是微分方程.你漏掉导数符号了或者漏掉微分符号d了.再问:没有,篇子上原题,一模一样。再答:你有没有看清楚,其中是不是有个y有个小小的一撇y'这真的不是微分方程,微分方程要含有导数或者偏导或者等价的

求曲线xy+ln y=1在(1,1)处的切线方程.

先求导等式两边同时对x求导得y+xy'+y'/y=0则y'=-y^2/(xy+1)当x=1,y=1时,y'=-1/2故切线方程为y-1=-1/2(x-1)即x+2y-3=0

求曲线的渐近线 y=ln(1+x)

还用求吗?只有一条渐近线x=-1.又因x趋于正无穷大时,y'=0,但直线y=c无论c取何值与y=ln(1+x)均有交点,故x趋于正无穷大没有渐进线.

x/y=ln(xy)求隐函数y的导数dy/dx,

x=yln(xy),等式两端对x求导,1=dy/dx+y[1/ln(xy)][y+x(dy/dx)]=dy/dx+y/ln(xy)+xdy/dx,整理得(dy/dx)(1+x)=1-y/ln(xy),

e^y+ln(xy)-e^(-x)=0,求y'

两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0

求微分方程通解y'=(xy+y)/(x+xy) 我算到y+ln|y|=x+ln|x|+c这步就不知道怎么算了

e^(y+ln|y|)=e^(x+ln|x|+C)e^y*e^ln|y|=e^x*e^ln|x|*e^C|y|e^y=|x|e^x*e^Cye^y=±e^C*xe^xye^y=C*xe^x(这里的C相

已知sin(xy)=ln((x+1)/y)+1,求y'(0).

sin(xy)-ln((x+1)/y)+1=0对x求导有:(y+xy')cos(xy)-y/(x+1)·[y-(x+1)y']/y^2-y/(x+1)·(x+1)(-1/y^2)y'=0x=0代入有: