f(x bh)-f(x) h
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 08:33:00
lim(h>0)[f(x0)-f(x0-2h)]/h=lim(h>0)2*[f(x0)-f(x0-2h)]/2h=2*lim(h>0)[f(x0)-f(x0-2h)]/2h=2f'(x0)
你在分子上减一个f(x)再加一个f(x)剩下的你应该会了吧
先用一次洛必达法则,(注意对h求导,x是定值),分子是f'(x+h)-f'(x-h),分母是2h,改为0.5*[f'(x+h)-f'(x)]/h+[f'(x-h)-f'(x)]/(-h),两部分都用导
f(x)=|x|在x=0处,lim(h→0)(f(xo+h)-f(xo-h))/2h=lim(h→0)(h-h)/2h=0但此函数在x=0处不可导.
给你提供三种方法,都读研的人了,本来不想做的,不给加分没良心.key1:洛必达法则lim(h→0)f(x0+h)+f(x-h)-2f(x) / h^2=lim(h→0)f 
lim[h→0][f(a-h)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)+f(a)-f(a+2h)]/h=lim[h→0][f(a-h)-f(a)]/h+lim[h→0][f(a
h(x)的值取f(x)和g(x)里面较大的那个
(f(x0+2h)-f(x0+h))/h用洛必达法则对h求导,即得=(2f'(x0)-f'(x0))/1=f'(x0)
令h=-t,则h→0-时,t→0+于是原式=lim【t→0+】[f(x)-f(x+t)]/(-t)=lim【t→0+】[f(x+t)-f(x)]/t=f'+(x).即f(x)在x点的右导数!
证明:因为f(x)具有连续的二阶导数,由拉格朗日定理f(x+h)-f(x)=hf'(x+t1h)①f(x)-f(x-h)=hf'(x-t2h)②(0
就是对于下面三个函数,求出[f(x+h)-f(x)]/h,第一个[f(x+h)-f(x)]/h=((2(x+h)^2-3(x+h))-(2x^2-3x))/h然后打开括号合并后面两个一样做法我觉得题目
这个配一下就行了,分母变为(m+n)h,最后结果是根号三倍的(m+n)
={[f(x_0+h)-f(x_0)]/h+[f(x_0)-f(x_0-h)]/h}/5=[f'(x_0)+f'(x_0)]/5=2/5*f'(x_0)---------或者直接洛必达=[f'(x_0
由导数的定义可知f(x)在x=2处可导,且f'(2)=1,就是说lim(f(2+h)-f(2))/h=1于是,lim[f(2+h)-f(2-h)]/h=lim[f(2+h)-f(2)+f(2)-f(2
limh->0(sin(x+h)-sin(x))/h=(sin(x)cos(h)+cos(x)sin(h)-sin(x))/h由limh->0sin(h)/h=1,cos(h)=1-2sin^2(h/
应该等于f(x)+hf'(x)+f''(x)h^2/2+拉格郎日或者皮亚诺余项
lim(h→0)1/h∫_a^b(f(x+h)-f(x))dx=lim(h→0)[∫_b^{b+h}1/hf(x)dx-∫_a^{a+h}1/hf(x)dx]=f(b)-f(a)(最后一步由连续性)