f(x 3)=-1 f(x),f(1)=2015
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 07:35:18
(1)f′(x)=3(x+1)(x-1),当x∈[-3,-1)或x∈(1,32]时,f′(x)>0,∴[-3,-1],[1,32]为函数f(x)的单调增区间,当x∈(-1,1)为函数f(x)的单调减区
若|f(a)|=|1−a3|<2成立,则-6<1-a<6,解得-5<a<7,即当-5<a<7时,p是真命题; 若A≠∅,则方程x2+(a+2)
f(x-1)=x(x-1)(x-2)=[(x-1)+1](x-1)[(x-1)-1]所以f(x0=(x+1)x(x-1)=x³-x再问:请问第二步是怎么转换来的表示看不懂--再答:凑x-1采
f(x)=x3+x-1x>0f(x)=x3+x+1当x0可以将-x看做一体,代入“x>0f(x)=x3+x+1”里面有f(-x)=(-x)^3-x+1;又f(-x)=-f(x)所以有-f(x)=(-x
∵f′(x)=3x2-3=3(x+1)(x-1),由f′(x)=0得:x=1或x=-1,∴极值点为x=-1,1;∴f(-1)=2为极大值,f(1)=-2为极小值;∴f(x)=0有3个不同的实根;由f(
这个很简单,证明单调性都是一个套路.设任意两个数X1和X2,X1大于X2,减函数你只要证明F(X1)小于F(X2)那就完事了.我这样说你还不会的话,你就不要再学数学了,浪费时间!
e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+...e^(-x)=1-x+x^2/2!-x^3/3!+……+(-1)^n*x^n/n!+……f(x)=x^3*e^(-x)=x^3-x
1、f′(x)=3x²+2ax+b;f′(1)=3+2a+b=0(1)f′(-2/3)=4/3-4a/3+b=0;(2)(1)-(2)得:10a/3+5/3=0;a=-1/2;带入(1)得:
(1)f′(x)=3x2-a,3x2-a≥0在R上恒成立,∴a≤0.又a=0时,f(x)=x3-1在R上单调递增,∴a≤0.(2)假设存在a满足条件,由题意知,f′(x)=3x2-a≤0在(-1,1)
lim(x->3)f(x)不存在如果要极限存在需要左极限等于有极限而lim(x->3+0)f(x)=3lim(x->3-0)f(x)=4显然lim(x->3+0)f(x)不等于lim(x->3-0)f
令t=x3-1因为x>0,所以t>-1.x=(t+1)的1/3次幂所以原式转化为f(t)=[1/3ln(t+1)]/(t+1)的2/3次幂t为一变量,只是一符号,改为x.即得f(x)表达式.最后再利用
三次函数,与x轴三个交点,题目只给了两个,你要分情况讨论咯.一眼看上去有三种情况,楼主你要写很久啊.k2是K的2次方吗?
f'(x)=x²-2f'(-1)x+1令x=-1f'(-1)=1+2f'(-1)+1f'(-1)=-2所以f'(x)=x²+4x+1所以f'(1)=1+4+1=6
由f(-1)=f(-2)=f(-3)得−1+a−b+c=−8+4a−2b+c−1+a−b+c=−27+9a−3b+c,解得a=6b=11,f(x)=x3+6x2+11x+c,由0<f(-1)≤3,得0
(1)f′(x)=3x2-2ax-3,∵x=-13是f(x)的极值点,∴f′(−13)=0,即3×(−13)2−2a×(−13)−3=0,解得a=4.经验证a=4满足题意.∴f(x)=x3-4x2-3
∵f(x)=x3-12x2-2x+5,∴f′(x)=3x2-x-2,由f′(x)=3x2-x-2>0,解得x>1,或x<−23所以原函数的单调增区间为(-∞,−23),(1,+∞).故答案为(-∞,−
f(x)=x3+xf‘(x)=3x²+1>0所以函数是增函数.再问:我都不敢相信,我问了这么2的问题……
因为当x∈[0,1]时,f(x)=x3.所以当x∈[1,2]时2-x∈[0,1],f(x)=f(2-x)=(2-x)3,当x∈[0,12]时,g(x)=xcos(πx);当x∈[12,32]时,g(x
x3+x=0则x(x2+1)=0在实数范围内只有x=0才是零点.