求方程y=sin(x y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:59:19
求方程y=sin(x y)
求由方程sin(xy)+In(y-x)=X所确定的隐函数y在x=0处的导数

sin(xy)+In(y-x)=x两边同时对x求导得cos(xy)·(xy)'+1/(y-x)·(y-x)'=1cos(xy)·(y+xy')+1/(y-x)·(y'-1)=1①当x=0时,sin0+

设Y是方程sin(xy)-1/y-x=1所确定的函数,求(1)y|x=o (2) y'|x=o

1)y|x=o当x=0时sin(0)-1/y-0=1得:y|x=0=-1(2)y'|x=osin(xy)-1/y-x=1两边对x求导:cos(xy)(y+xy')+y'/y^2-1=0当x=0时y=-

设y是方程sin(xy)-(1/y-x)=1所确定的函数,求y'丨x=0

是把y看作关于x的函数.再问:不是很懂,给个步骤吧。谢谢。再答:1/y-x是(1/y)-x的意思,还是1/(y-x)?再问:1/(y-x)再答:把y看做x的复合函数,两边对x求导,得cos(xy)·(

已知方程sin(xy)+x+y=1确定了函数y=y(x),求y'.

两边求导得:cos(xy)*(y+xy')+1+y'=0y'[xcos(xy)+1]=-ycos(xy)-1所以,y'=-[ycos(xy)+1]/[xcos(xy)+1]

设y=y(x)由方程e^xy+sin(xy)=y确定,求dy/dx.

e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))

设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos

求由方程xe^y+sin(xy)=0所确定的隐函数的导数dy/dx

将原方程两边微分得d[xe^y+sin(xy)]=0→e^ydx+xe^ydy+cos(xy)(ydx+xdy)=0→移项[xe^y+xcos(xy)]dy=-[e^y+ycos(xy)]dx整理→d

求方程xy''=y'ln(y'/x)的通解

设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C

设sin(x+y)=xy,求dy/dx.

cos(x+y)(1+y')=y+xy'dy/dx=y'=[y-cos(x+y)]/[cos(x+y)-x]

设函数y=f(x)由方程sin y+e^x-xy^2=0确定,求d y/d x

Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)

xy-sin(πy^2)=0 求dy/dx

y+xy'-cos(πy²)2πyy'=0y=[2πycos(πy²)-x]y'y'=y/[2πycos(πy²)-x]即:dy/dx=y/[2πycos(πy²

设方程sin y +ex(x次方)-xy 2(平方)=0确定隐函数y =y (x),求dy /dx

∵siny+e^x-xy^2=0,∴(dy/dx)cosy+e^x-[y^2+2xy(dy/dx)]=0,∴(cosy-2xy)(dy/dx)=y^2-e^x,∴dy/dx=(y^2-e^x)/(co

设z是由方程z=sin(xz)+xy确定的函数,求z对x的二阶导数,x=0,y=1.

这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x

设y=y(x)由方程x^2-sin(xy)=2y确定,求dy/dx

dy/dx=-fx/fy,你自己可以算吧

设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0

e^(x+y)+sin(xy)=1e^(x+y)*(1+y')+cos(xy)(y+xy')=0y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]y'=-[ycos(x

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[