求方程3^x x-2 x 1=0的近似解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:58:53
韦达定理x1+x2=-3/2,x1x2=-1/2
根据韦达定理x1+x2=-3/2,x1x2=-2所以x1²+x2²=(x1+x2)²-2x1x2=(-3/2)²+4=9/4+4=25/4
x1+x2=m=2方程x^-mx-3=0变为x^2-2x-3=0(x+1)(x-3)=0x=-1或3x1,x2的值为-1或3
已知x1、x2是方程2x²-3x-5=0的两个根,则由韦达定理有:x1+x2=3/2,x1*x2=-5/2且有:2x1²-3x1-5=0,2x2²-3x2-5=0即:2x
根据韦达定理可得:x1+x2=3/2,x1x2=-5/2所以有:x1²+x2²=(x1+x2)²-2x1x2=9/4+5=29/4因:x2是方程的解,所以有:2x2
X1,X2是方程3X^2-2X-5=0的两根由韦达定理有:x1+x2=2/3,x1x2=-5/3因为(x1-x2)^2=(x1+x2)^2-4x1x2=(2/3)^2-4*(-5/3)=64/9所以|
方程4x^2-7x-3=0的两根为x1,x2,所以x1+x2=7/4,x1x2=-3/4,x2/(x1+1)+x1/(x2+1)=(x1^2+x2^2+x1+x2)/(x1x2+x1+x2+1)x1^
方程3x²-4x=-1可化为:3x²-4x+1=0由根与系数的关系,有x1+x2=4/3,x1x2=1/3∴x2/x1+x1/x2=(x1²+x2²)/(x1x
根据韦达定理:x1+x2=-b/ax1*x2=c/a代入:x1+x2=-5/3x1*x2=-2/3即:x1+x2+x1*x2=(-5/3)+(-2/3)=-7/3
x1^2-4x1+2=0x1^2-3x1=x1-2x1+x2-2=4-2=2
X1+X2=b/a=-2/3,X1*X2=c/a=-2/3(两个基本公式)(X1-X2)平方=(X1+X2)平方-4*X1*X2=4/9-(-8/3)=28/9X1-X2的绝对值=2/3倍的根号7
(2x-1)(x-3)=0x1=1/2x2=3
根据韦达定理x1+x2=-3x1=-3-x2x1*x2=1(x1-x2)^1=x1^2+x2^2-2x1x2=(x1+x2)^2-4x1x2=9-4=5x1-x2=±根号5x1^2+3x2+2=x1*
因为3x²-4x-2=0所以知X1+X2=-B/A=-(-4)/3=4/3X1X2=C/A=-2/3x1²+x2²=X1²+X2²+2X1X2-2X1
已知x1是方程的解,则2x1²-2x1-5=0===>x1²-x1=5/2=2.5又,x1,x2是方程的两个解,则:x1+x2=1,x1x2=-5/2x1³+3x1
x₁+x₂=-3/2、x₁x₂=-1/3、2x₁²+3x₁-1=02x₁²+x₁x&
X1+X2=3/2X1*X2=-5/2(1)1/X1+1/X2=(X1+X2)/X1*X2=-3/5(2)x1²+x2²=(X1+X2)²-2*X1*X2=29/4(3)
设方程2X²-3X+1=0的两个根为X1X2则X1+X2=-(-3)/2=3/2X1*X2=1/2X1²+X2²=(X1+X2)²-2*X1*X2=(3/2)&
对于一元二次方程ax2+bx+c=0,若存在根x1、x2,则x1+x2=-b/a,x1*x2=c/a;对于本题,x1+x2=4/3,x1*x2=-2/3,所以(1)=(x1+x2)^2-2x1*x2=
解法一:已知关于x的方程x2-mx-3=0的两实数根为x1、x2.由根与系数的关系可得x1•x2=-3,又∵x1+x2=2解得x1=3,x2=-1或x1=-1,x2=3.解法二:∵x1+x2=2,∴m