求微分方程y y-2y=cosx-3sinx的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:41:22
答:xdy/dx+y=cosxxy'+y=cosx(xy)'=cosxxy=sinx+C所以:通解为xy=sinx+C
dy/dx+y/x=cosx积分因子=e^∫1/xdx=e^ln|x|=x,乘以方程两边x·dy/dx+y=xcosxd(xy)/dx=xcosxxy=∫xcosxdxxy=∫xd(sinx)=xsi
x+yy'=0y·dy/dx=-xy·dy=-x·dx两端积分:∫y·dy=∫-x·dxy²/2=-x²/2+C1即y²+x²=2C1令C=2C1得y²
点击放大,如果看不清,可以将点击放大后的图片临时copy下来,会非常清晰:
既然你的题目是“可降阶的高阶微分方程”,那就应该这样做:再答:
y''+2y'+5y=0r^2+2r+5=0r1=-1-2ir2=-1+2iy=C1e^(-x)cos2x+C2e^(-x)sin2x设y=acosx+bsinx5y=5acosx+5bsinx2y'
[yy''-(y')^2]/(y^2)=lny(y'/y)'=lnyy'/y=y(lny-1)y'=y^2(lny-1).
由(y'y")'=(y")^2+y'y"及(yy")'=yy"'+y'y"y"(y')^2=[1/3*(y')^3]'代入原方程得:得:(yy")'-y'y"=(y'y")'-y'y"+[1/3*(y
yy''-y'^2+y'=0x'y'=1y'=1/x'y''=-x''/(x')^2y*(-x''/(x')^2-(1/x')^2+1/x'=0x''y+1-x'=0x''y-x'=-1x''y-x'
yy''=y'^2+y^2y'=dy/dx=py''=dp/dx=(dp/dy)(dy/dx)=pdp/dyypdp/dy=p^2+y^2(y/2)dp^2=p^2dy+y^2dyp^2=uydu/2
全微分法,如果dz=∂z/∂xdx+∂z/∂ydy=0,那么通解u(x,y)=C(x^2+1)y'+2xy-cosx=0(x^2+1)dy+(2xy-c
xy'+y=cosx(xy)'=cosxxy=sinx+Cy=(sinx)/x+C/x
这两题都可以化成全微分求解 .点击放大:
2/9再问:过程,谢谢再答:由题目得y/x=2/3xy/xx+yy-yy/xx-yy=y/x-(y/x)²=2/3-4/9=2/9
因为y'+P(x)y=Q(x)的两个特解是y1=2x,y2=cosx,所以y1-y2=2x-cosx是方程y'+P(x)y=0的一个特解,而该方程是一阶的,所以方程y'+P(x)y=0的通解为Y=c*
1、e^ydy=e^(2x)dx两边积分:e^y=e^(2x)/2+C令x=0:1=1/2+C,C=1/2所以e^y=(e^(2x)+1)/2y=ln(e^(2x)+1)-ln22、y'/x^2-2y
定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=
两边同时对y积分得d(yy')=d(0.5y^2(lny-0.5))y'=0.5ylny-1/4y+c1/y积分得y=1/4y^2lny-1/4y^2+C1lny+C2
xdy-ydx=-x^2cosxdx(xdy-ydx)/x^2=-cosxdxd(y/x)=-cosxdx两边积分:y/x=-sinx+Cy=-xsinx+Cx