求微分方程x^2y 3xy y=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:39:22
求微分方程x^2y 3xy y=0
求微分方程 (x+y)dx+xdy=0 的通解.

(x+y)dx+xdy=xdx+(ydx+xdy)=xdx+d(xy)=0即d(xy)=-xdx两端求积分得,xy=-x^2/2+c所以,y=-x/2+c/x

求微分方程 dy/dx=(x+y)^2

变换u=x+y,则y'=u'-1,方程化为u'-1=u^2,分离变量:du/(1+u^2)=dx,两边积分:arctanu=x+C,所以u=tan(x+C),所以y=tan(x+C)-x

求微分方程 dy/dx=(x+y)^2 ... 要过程.

令x+y=u则dy/dx=(du/dx)-1=u^2分离变量du/(1+u^2)=dx两边积分∫du/(1+u^2)=∫dx得arctanu=x+C得通解arctan(x+y)=x+C

求微分方程y'=y/(1+x^2)的通解

y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数

求微分方程x^2dy+(y-2xy-x^2)dx=0的通解

∵x²dy+(y-2xy-x²)dx=0==>e^(-1/x)dy/x²+(y-2xy-x²)e^(-1/x)dx/x^4=0(等式两端同乘e^(-1/x)/x

求微分方程(xy^2-x)dx+(x^2y+y)dy=0的通解

(xy^2-x)dx+(x^2y+y)dy=0xy^2dx-xdx+x^2ydy+ydy=0xy^2dx+x^2ydy-xdx+ydy=02xy^2dx+2x^2ydy-2xdx+2ydy=0注意:d

求微分方程y'= 1/(2x-y^2)通解

∵y'=1/(2x-y²)∴dx/dy=2x-y².(1)∵齐次方程dx/dy-2x=0的特征方程是r-2=0,则r=2∴齐次方程dx/dy-2x=0的通解是x(y)=Ce^(2y

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

求微分方程dy/dx+2xy=3x

先求dy/dx+2xy=0的解:dy/y=-2xdx,--->lny=-x^2+C=-ln(e^(x^2))+lnC=ln(C*e^(-x^2)),即y=C*e^(-x^2).然后令y=C(x)*e^

求微分方程x^2ydx-(x^3+y^3)dy=0的通解

x^2ydx-(x^3+y^3)dy=0变形:dx/dy=x/y+(y/x)^2设x/y=u,x=yudx/dy=u+ydu/dyu+ydu/dy=u+(1/u)^2ydu/dy=(1/u)^2u^2

求微分方程(siny-x)dy-dx=0的通解

变为dx/dy=-x+siny公式:对于y'=P(x)y+Q(x),通解为y=(∫{Q(x)e^[-∫P(x)dx]}dx+C)e^[∫P(x)dx]对于dx/dy=-x+siny,P(y)=-1,Q

求微分方程dy/dx=x^2y^2

dy/dx=x^2y^2dy/y²=x²dx积分得-1/y=x³/3+C1y=-3/(x³+C)

dy/dx=x^2+y^2,求微分方程

J(x)是贝塞尔函数,再问:贝塞尔函数没学过,普通方法解不了吗?再答:就是说,你的那个方程式贝塞尔方程,它有级数解,

求微分方程3x^2+5x-5y'=0的通解

答:原方程可写为:5dy/dx=3x^2+5xdy=(3x^2/5+x)dx两边积分,y=x^3/5+x^2/2+C

高数一阶线性微分方程:求微分方程xy'-2y=x³e∧x 满足初始条件y|x=1 =0

再问:明白,我之前算的时候漏了个负号,谢谢啊!

紧急!x+y-3^xy=0 求微分方程

答案,X=1Y=0或者X=0Y=1再问:是求微分。不是微分方程。答案是dxdy-3^(xy)•ln3(dx•ydy•x)=0再问:求过程

求微分方程xy'+(1-x)y=e^(2x)(0

xy'+(1-x)y=e^(2x)xy'+y-xy=e^(2x)(xy)'-xy=e^(2x)特征方程r-1=0因此齐次通解是xy=Ce^x设非齐次特解是xy=ae^(2x)(xy)'=2ae^(2x

高数问题微分方程求微分方程dy÷dx+2xy=4x的通解,

楼上说的对但用分离变量法会更容易理解dy/dx=2x(2-y)dy/(2-y)=2xdx两边积分得:-ln|2-y|=x^2+c1y=2+ce^(-x^2)

高数中微分方程求解求微分方程y'cos^2x+y-tanx=0的通解

方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=

求微分方程的通解:x(y^2-1)dx+y(x^2-1)dy=0

两边同乘以1/2,得到的一个恰当微分方程,它是二元函数f(x,y)=(x^2-1)(y^2-1)的全微分,所以,解是:(x^2-1)(y^2-1)=c,c是任意常数.再问:干嘛复制别人的答案啊!!我要