求平面3X 2Y Z=1被柱面2X2 Y2=1截下部分的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:55:46
设l为柱面的底,即圆(x-1)^2+(y-1)^2=1.那么设x=1+cost,y=1+sintz=x^2+y^2=(1+cost)^2+(1+sint)^2=3+2cost+2sintdl=√[(x
由于,柱面的准线为x=2z,x=y*y+z*z.(将原题中的X=2z改写为:x=2z)而x=2z为一平面.故它就是准线所在平面.即所求柱面的母线垂直于此平面.此平面(x=2z)的法向量为n=(1,0,
如图:再问:你好,这个是什么软件做出来的?3dmax吗?就是说面积是14.31吧再答:忘了说明,3DMAX测量物体时,当体积为0时,其表面积是指该薄片上下两层的表面积。所以输出数据14.31,实际只是
Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70
再答:欢迎追问,希望采纳
转化为极坐标求解则z=r^2;dv=2πrdr*z(r)=2πr^3dr;对dv求积分,上限为2,下限为0;
一个平面...它的法向量是(1,1,1),用点法式方程表示就是1*(x-0)+1*(y-0)+1*(z-0)=0,所以它是一个通过原点的平面
=∫x(yzx^2-1/2(xz)^2)dx+∫y(1/2x^2+xy)dy=[1/3yzx^3-1/6z^2x^3+1/2x^2y+1/2xy^2]|z[0,2]、y[0,1]、x[0,1]=1
直线L:x=y/2=z/3的方向向量为(1,2,3),过原点并且与直线L垂直的平面M方程为x+2y+3z=0;现作半径为2且过原点的球x²+y²+z²=4,平面M与球的交
高斯公式法.取Σ:x²+y²=1,前侧补Σ1:z=3,上侧补Σ2:z=0,下侧补Σ3:x=0,后侧∫∫(Σ+Σ1+Σ2+Σ3)ydzdx=∫∫∫Ω(0+1+0)dxdydz=∫∫Ω
z=10-x-5y∫∫√1^2+(-1)^2+(-5)^2dxdy=3√3∫∫dxdy=3√3*π3^2=27√3π
这是因为求距离都是正值,距离公式外都要加绝对值符号,作目标函数时,平方后就不会出现负数问题,你若对空间图形有直观的了解,就不必用平方项,因为平面x/3+y/4+z/5=1是经过A(3,0,0),B(0
首先根据后面的方程令x=cos(theta),y=sin(theta),这样就简单多了,具体代码如下[thetaz]=fminbnd(@(theta)5*(1-cos(theta)/3-sin(the
所围成立体体积=∫∫(x²+y²)dxdy(所围成立体体积在xoy平面上的投影:x²+y²≤4)=∫dθ∫r²*rdr(作极坐标变换)=2π*(2^4
y=√(a^2-x^2)面积S=∫∫√(1+(y'x)^2dxdy=∫(0,a)dx∫(-x,x)a/√(a^2-x^2)dz=2a∫(0,a)x/√(a^2-x^2)dx=2a*(-√(a^2-x^
我没有软件,写不出式子,利用直角坐标系,二重积分写成二次积分,x上限1,下限0,y上限1,下限0,被积函数,根号下1+4x^2
相交为椭圆柱轴对称方向(1,0,0)切面法线方向(1,1,1)/sqrt(3)它们垂直方向为相交椭圆的短轴方向(0,-1,1)/sqrt(2),由于此方向垂直柱轴对称方向,此方向直线相交柱的长度为柱的
"使用柱坐标系:0≤θ≤π/2,0≤ρ≤1,0≤z≤1∫∫∫xydv=∫(0→π/2)dθ∫(0→1)ρdρ∫(0→1)ρ^2sinθcosθdz=∫(0→π/2)dθ∫(0→1)ρ^3sinθcos
这道题应该是出错了,应该是以平面y=0为侧,那样结果就正确了.
∫∫(3-x-y)dxdy=∫∫(3)dxdy=3π.【关键是利用被积函数奇偶性与积分区域对称性】因为x关于x为奇函数,D关于y轴对称,所以∫∫(x)dxdy=0类似地,有∫∫(y)dxdy=0