求基础解系x1-2x1 4x3-7x4=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:58:57
求基础解系x1-2x1 4x3-7x4=0
求下列齐次线性方程组的基础解系,并写出其一般解 2x1+x2-3x3+2x4=0 3x1+2x2+x3-2x4=0 x1

21-32321-2114-410-760111-100000x1=7x3-6x4x2=-11x3+10x4取x3=1,x4=0,得x1=7,x2=-11ξ1=(7,-11,1,0)T取x3=0,x4

若X1、X2、X3、为齐次线性方程AX=0的一个基础解系,为什么X1+X2,X2-X3,X1+X2+X3也是它的基础解系

证明:(1)因为齐次线性方程组的解的线性组合仍是解所以X1+X2,X2-X3,X1+X2+X3都是AX=0的解.(2)设k1(X1+X2)+k2(X2-X3)+k3(X1+X2+X3)=0则(k1+k

求齐次线性方程组的基础解系,得方程解X1=X2-2X4,X3=X4,怎么得到基础解系

X1=X2-2X4X3=X4自由未知量x2,x4分别取1,0和0,1得(1,1,0,0)^T,(-2,0,1,1)^T这是常规取法

齐次方程组x1-x2+x3+x4=0 2x1+x2-2x3+2x4=0的一个基础解系

我的是(1/3-4/310)的转置和(-1001)的转置再问:能写下过程吗再答:很难啊,您告诉我怎么在这上面打矩阵?大概过程就是把系数矩阵化成阶梯矩阵,然后把x3,x4令为自由量c1,c2。写出通解,

求下列齐次线性方程组的一个基础解系和通解x1+x2-3x4=0,x1-x2-2x3-x4=0,4x1-2x2+6x3+3

化简到最后阶梯形,第一行是110-3第二行是011-1第三行0043令x4等于1为自由未知数,其他解出来是分数,同时乘4再配个系数就得到答案

求下列齐次线性方程组的一个基础解系:2X1+3X2-X3+5X4=0 3X1+X2+2X3-7X4=0 4X1+X2-3

系数矩阵A经初等行变换化为梯矩阵1-24-70117-4600150001r(A)=4,方程组只有零解,无基础解系."知道手机网友"字数受限制我不大开qq呢...

求齐次线性方程组X1+X2+Xn=0的基础解系,

系数矩阵的秩为1基础解系含n-1个向量:a1=(-1,1,0,...,0,0)a2=(0,0,1,...,0,0)...an-2=(0,0,0,...,1,0)an-1=(-1,0,0,...,0,1

求数学齐次线性方程组求X1+X2-2X4=0 4X1-X2-X3-X4=0 3X1-X2-X3=0的基础解系及通解

化为标准型,基础解系是(1121)转置,通解乘个系数就完事了再问:详细解答,谢谢再答:公式打起来麻烦,你得稍等会再问:好的,谢谢,我是自学的考生,书上讲的太简单,有的也看不明白再答:所以,方程可化为x

求非齐次线性方程组的基础解系及其通解 X1+X2+X3+X4=2 X1+2X2+2X3+X4=4 2X1+X2+X3+4

写出增广矩阵为11112122142114β第2行减去第1行,第3行减去第1行×211112011020-1-12β-4第1行减去第2行,第3行加上第2行10010011020002β-2第3行除以2

求齐次线性方程组的基础解系2x1-3x2-2x3+x4=0,3x1+5x2+4x3-2x4=0,8x1+7x2+6x3-

系数矩阵=2-3-21354-2876-3r2-r1,r3-4r12-3-21186-301914-7r1-2r20-19-147186-301914-7r1+r3,r3*(1/19),r2-8r30

请问下 有2个自由变量的时候用 x1 x2 =0 1 或 1 0 来求基础解系 那自由变量为1个的时候把它当作几呢?

任一非零数常取1再问:就是求得了最简型然后基础解系具体点怎么算呢??谢拉谢拉再答:你给个具体的题目才好具体说

3元齐次线性方程组x1+2x2=0 x3=0的一个基础解系

方程组的系数矩阵为120001矩阵的秩为2,有3个未知数,所以基础解系有3-2=1个向量所以得到基础解系为(-2,1,0)^T

齐次线性方程组{X1+X2+3X3+X4=0;2X1-X2+X3-3X4=0;X1+X3-X4=0}的基础解系

系数矩阵是11312-11-3101-1进行初等行变换后是100-201000011则x1-2x4=0,即x1=2x4x2=0x3+x4=0,即x3=-x4基础解系为(2,0,-1,1)

求下列齐次线性方程组的一个基础解系: X1+X2+2X3-X4=0 2X1+X2+X3-X4=0 2X1+2X2+X3+

系数矩阵经初等行变换化为100-4/30103001-4/3自由未知量x4取3,得方程组的一个基础解系为(4,-9,4,3)^T注:基础解系不唯一

感激不尽求线性方程组基础解系x1+x2+3x4-x5=0x1-x2+2x3-x4=04x1-2x2+6x3+3x4-4x

系数矩阵A=[1103-1][1-12-10][4-263-4][24-24-7]行初等变换为[1103-1][0-22-41][0-66-90][02-2-2-5]行初等变换为[1103-1][02

x1+x2+2x3-x4=0 求其次线性方程组 2X1+3X2+X3-4X4=0 的基础解系及通解 5X1+6X2+7X

增广矩阵=112-1231-4567-7r2-2r1,r3-5r1112-101-3-201-3-2r1-r2,r3-r2105101-3-20000基础解系为:a1=(-5,3,1,0)',a2=(

求线性方程组x1+x2+x3=1的通解和基础解系,

先算齐次解x1+x2+x3=0解为x=(1,-1,0),(1,1,-2)齐次通解为x1=s+tx2=-s+tx3=-2t特解x1=1x2=0x3=0非齐次通解为x1=1+s+tx2=-s+tx3=-2

求线性方程组{X1+X2+2X3-3X4=0; X1+2X2-X3+2X4=0; 2X1+3X2+X3-X4=0}的基础

112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-