求在D上服从均匀分布的随机变量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:19:09
求在D上服从均匀分布的随机变量
设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c不等于零),试求随机变量Y的密度函数

不对的地方多多指教再问:第一步不太明白诶!再答:f(x)么?这是均匀分布的公式啊

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

二维连续型随机变量(X,Y)在区域D上服从均匀分布,求在X=0条件下,关于Y的条件概率密度.

学姐,你又粗现了.条件概率公式:f(x,y)/f(x)=f(y|x),令x=0,有这个公式算一下,答案立刻就出来了

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

设随机变量X服从区间为[1,3]上的均匀分布,且Y=2X+1,求D(Y).

由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.

设随机变量(x,y)在以点(0,1),(1,0)(1,1)为顶点的三角形区域D上服从均匀分布,求D(x)

D(x)=Ex²-(Ex)²均匀分布,概率密度是面积的倒数:f(x,y)=1/s=2f(x)=∫(1-x,1)f(x,y)dy=∫(1-x,1)2dy=2xEx=∫(0,1)xf(

随机变量(X,Y)服从区域D上的均匀分布,其中D=(0

从题设易知X与Y独立,且X与Y的联合概率密度为f(x,y)=1/2,0

随机变量X在(-1,2)上服从均匀分布,求随机变量Y=|X|/X的数学期望E(Y)和方差D(Y).

Y=1当x大于0概率2/3Y=-1当x小于0概率1/3E(Y)=1*2/3+(-1)*1/3=1/3D(Y)=E(Y^2)-E(Y)^2=1-1/9=8/9

设随机变量X在(-π/2,π/2)上服从均匀分布,试求随机变量Y=sinX的密度函数

先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.