f(2 t)=f(2-t)怎么求对称轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:50:31
首先X,Y都是关于t的函数dy/dt=f'(t)+tf''(t)-f'(t)=tf''(t)dx/dt=f''(t)一阶导是dy/dx=(dy/dt)/(dx/dt)=t
两边求两次导,然后就象解决微分方程一样解决它
f(x+T/2)=f(x-T/2)只是对f(x+T)=f(x)换了个形式,让我们来看看:你可以令x-T/2=X,则,x=X+T/2,代到上面的式子中得到f(x+T/2)=f(X+T/2+T/2)=f(
=[1,0,-1];a=[1,4,6,2];[Hjw,w]=freqs(b,a);
第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,
f'(x)=lnx+x(1/x)=lnx+1令f'(x)=0lnx+1=0x=1/ex0,函数单调递增.(1)0
由导数的定义可知,f'(0)=lim(t->0)[f(t)-f(0)]/(t-0)=lim(t->0)[f(t)-f(0)]/t,所以lim(t->0)[f(3t)-f(t)]/t=lim(t->0)
很明显LS是不知道哪里去复制粘贴的毫不相干的问题f(t)图形是0到2直接的一个矩形脉冲,可以看成门函数向右平移1个单位g2(t)→2Sa(ω),所以f(t)→2Sa(ω)*e^(-jt)拉普拉斯变换1
根据定义f'(1)=lim[f(1+t)-f(t)]/t,但是题目中所求式中分母是t,但分子两项相差3t,所以若想与f'(1)建立联系,只需在分子上乘3,但此时我们人为地将所求缩小为了原来的1/3,所
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
2-t>0t-1≥0解得,1≤t<2所以,定义域为D=[1,2)
将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值
F(x)=tx^2+2t^2x+t-1=t(x^2+2tx+t^2)-t^3+t-1=t(x+t)^2-t^3+t-1因为t>0所以当x=-t时f(x)最小值h(t)=-t^3+t-1h(t)=-t^
当T>=0时[T,T+2]为正值区间F(X+T)>=2F(X)=>(X+T)^2>=2X^2(X-T)^2-2T^2=√2当T
f(1+t)=-f(1-t)f(1+0)=-f(1-0)f(1)=0a=-1f(x)=(x-1)^3f(2)+f(-2)=1-27=-26
此题实质为拉氏变换的性质运用,方法很多,可以用位移性质和微分性质处理.
f(x)=1/1+t^2x-1(t>0),=t/(t+t^2x)f(x)+f(1-x)=t/(t+t^2x)+t/(t+t^[1-2x])=t/(t+t^2x)+t^2x/(t^2x+t)=(t+t^
如果“*”是卷积的话,那么L(t^2*f(t))=L(t^2)×L(f(t))=2F(S)/(S^3)
是不是一次函数啊?如果是一次函数,那么设通式为y=ax+b即f(x)=ax+b题中已知3f(t+1)-2f(t-1)=2t+17将通式代入即得3[a(t+1)+b]-2[a(t-1)+b]=2t+17