f(0)=1 2m f(x 1)-(x-1)=4x-2m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:59:45
f(0)=1 2m f(x 1)-(x-1)=4x-2m
设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,12],都有f(x1+x2)=f(x1

解;(1)∵f(1)=f(12+12)=f(12)•f(12)=f2(12)=a,∴f(12)=±a又∵f(12)=f(14+14)=f2(14)>0,∴f(12)=a12同理可得f(14)=a14(

设函数f(x)=logax (a>0,a≠1),若f(x1)f(x2)...f(x2008)=8,则f(x1^2)+f(

应该f(x1)+f(x2)+...+f(x2008)=logax1+logax2+...+logax2008=logax1*x2*.*x2008=8所以x1*x2*.*x2008=a^8所以f(x1^

抛物线C:y^2=2px p>0 的焦点为F,点M在C上,|MF|=5,若一MF为直径的圆过点(0,2),则C的方程为?

抛物线焦点F(p/2,0),准线x=-p/2设M坐标为M(a,b),则满足b²=2paMF=5,转化为M到准线的距离=5,得a=5-p/2MF是圆直径,圆心横坐标为(5-p/2+p/2)/2

二次函数f(x)=ax²+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f((x1+x2)/2

由于f(x1)=f(x2)∴x1与x2是关于对称轴对称的两横坐标的值(因为x1,x2不等,说明两点异侧)∵x1,x2的对称轴为(x1+x2)/2∴f[(x1+x2)/2]就是其顶点的函数值了f[(x1

证明一道数学题证明对任意实数0<x1<x2<1,f‘(x)-[f(x1)-f(x2)]/(x1-x2)=0在(x1,x2

F(x)=f(x)-x*[f(x1)-f(x2)]/(x1-x2)F(x1)=f(x1)-x1f(x1)/(x1-x2)+x1f(x2)/(x1-x2)=[x1f(x2)-x2f(x1)]/(x1-x

已知函数f(x)=-x³,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)

函数f(x)是减函数,又是奇函数x1+x2>0则:x1>-x2则:f(x1)

f(x)=lgx(x大于0),若x1,x2大于0,判断1/2[f(x1)+f(x2)]与f[(x1+x2)/2]的大小并

解法一:f''(x)=-(ln10)/x²,恒小于零,故f(x)为凸函数,即1/2[f(x1)+f(x2)]=(x1*x2)^0.5又f(x)为增函数所以1/2[f(x1)+f(x2)]

函数的奇偶性习题f(x1*x2)=f(x1)+f(x2)备注12都是下标.定义域D为x不等于0,且X1、X2属于D求f(

设X1=X2=XF(X*X)=F(X)+F(X)再设X1=X2=-XF((-X)*(-X))=F(X*X)=F(-X)+F(-X)所以F(X)=F(-X)又因为定义域关于原点对称所以原函数为偶函数个人

一道超级难题已知f(x)=ax^2+bx+c(a>0)且x1不等于x2,则f[(2x1+x2)/3]与[2f(x1)+f

首先你取个特殊的f——f(x)=x^2,代入计算,不难发现应该是填=f[(2x1+x2)/3]

f(x1+x2)=f(x1)f(x2),f’(0)=2,求f(x)和f’(x)

由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧

已知函数y=f(x).对于任意两个实数x1,x2,有f(x1+x2)=f(x1)f(x2)且f(0)不等于0,

f(x1+x2)=f(x1)f(x2)f(0)=f(0+0)=f(0)f(0)=[f(0)]²又f(0)≠0,则f(0)=1f(-2008)f(-2007)f(-2006)..f(2006)

对数函数题2对任意的x1,x2∈(0,+∞),若函数f(x)=lgx,试比较[f(x1)+f(x2)]/2与[f(x1+

[f(x1)+f(x2)]/2=1/2Log(x1*x2)f[(x1+x2)/2]=log[(x1+x2)/2]故前式>=后式

最近遇到的数学难题.1:设抛物线C:y^2=2px(p〉0)的焦点F,点M在C上,且丨MF丨=5.若以MF为直径的圆点(

抛物线焦点F(p/2,0),准线x=-p/2设M坐标为M(a,b),则满足b²=2paMF=5,转化为M到准线的距离=5,得a=5-p/2MF是圆直径,圆心横坐标为(5-p/2+p/2)/2

y^2=4x上两动点A(x1,y1),B(x2,y2)及一个定点M(1,2),F是抛物线的焦点,若AF,MF,BF成等差

又2p=4得p/2=1AF=x1+p/2MF=1+p/2BF=x2+p/2因为AF,MF,BF成等差数列所以有2MF=4=AF+BF=x1+x2+2所以x1+x2=2不懂再问,Forthelichki

已知函数f(x)对任意实数x1,x2都有f(x1x2)=f(x1)+f(x2)成立,则f(0)=?f(1)=?

f(0)=f(0*0)=f(0)+f(0)=2f(0)∴f(0)=2f(0)f(0)=0f(1)=f(1*1)=f(1)+f(1)=2f(1)∴f(1)=2f(1)f(1)=0

设二次函数f(x)=ax的平方+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于?

f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c

已知抛物线y=12x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=2|NF|,则|MF|= _

作N到准线的垂线NH交准线于H点.根据抛物线的定义可知|NH|=|NF|,所以在△NOM中,|NM|=2|NH|,所以∠NMH=45°.所以在△MFO(O为准线与y轴交点)中,∠FMO=45°,所以|

已知函数y=f(x)对于定义域内的任意实数x1,x2(x1≠x2)都有f(x1)-f(x2)/(x1-x2)>0,

[f(x1)-f(x2)]/[(x1-x2)]>0,(1)x1f(x2),所以,是递增的;所以,选Aps:事实上这个式子是单调递增的等价定义,相应的还有[f(x1)-f(x2)]/[(x1-x2)]