f(0)=1 2m f(x 1)-(x-1)=4x-2m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:59:45
解;(1)∵f(1)=f(12+12)=f(12)•f(12)=f2(12)=a,∴f(12)=±a又∵f(12)=f(14+14)=f2(14)>0,∴f(12)=a12同理可得f(14)=a14(
应该f(x1)+f(x2)+...+f(x2008)=logax1+logax2+...+logax2008=logax1*x2*.*x2008=8所以x1*x2*.*x2008=a^8所以f(x1^
抛物线焦点F(p/2,0),准线x=-p/2设M坐标为M(a,b),则满足b²=2paMF=5,转化为M到准线的距离=5,得a=5-p/2MF是圆直径,圆心横坐标为(5-p/2+p/2)/2
由于f(x1)=f(x2)∴x1与x2是关于对称轴对称的两横坐标的值(因为x1,x2不等,说明两点异侧)∵x1,x2的对称轴为(x1+x2)/2∴f[(x1+x2)/2]就是其顶点的函数值了f[(x1
F(x)=f(x)-x*[f(x1)-f(x2)]/(x1-x2)F(x1)=f(x1)-x1f(x1)/(x1-x2)+x1f(x2)/(x1-x2)=[x1f(x2)-x2f(x1)]/(x1-x
函数f(x)是减函数,又是奇函数x1+x2>0则:x1>-x2则:f(x1)
解法一:f''(x)=-(ln10)/x²,恒小于零,故f(x)为凸函数,即1/2[f(x1)+f(x2)]=(x1*x2)^0.5又f(x)为增函数所以1/2[f(x1)+f(x2)]
设X1=X2=XF(X*X)=F(X)+F(X)再设X1=X2=-XF((-X)*(-X))=F(X*X)=F(-X)+F(-X)所以F(X)=F(-X)又因为定义域关于原点对称所以原函数为偶函数个人
首先你取个特殊的f——f(x)=x^2,代入计算,不难发现应该是填=f[(2x1+x2)/3]
由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧
f(x1+x2)=f(x1)f(x2)f(0)=f(0+0)=f(0)f(0)=[f(0)]²又f(0)≠0,则f(0)=1f(-2008)f(-2007)f(-2006)..f(2006)
[f(x1)+f(x2)]/2=1/2Log(x1*x2)f[(x1+x2)/2]=log[(x1+x2)/2]故前式>=后式
抛物线焦点F(p/2,0),准线x=-p/2设M坐标为M(a,b),则满足b²=2paMF=5,转化为M到准线的距离=5,得a=5-p/2MF是圆直径,圆心横坐标为(5-p/2+p/2)/2
又2p=4得p/2=1AF=x1+p/2MF=1+p/2BF=x2+p/2因为AF,MF,BF成等差数列所以有2MF=4=AF+BF=x1+x2+2所以x1+x2=2不懂再问,Forthelichki
答案错了,要求的值其实等于涵数的极值
f(0)=f(0*0)=f(0)+f(0)=2f(0)∴f(0)=2f(0)f(0)=0f(1)=f(1*1)=f(1)+f(1)=2f(1)∴f(1)=2f(1)f(1)=0
f(x1)=f(x2),所以x1x2关于对称轴对称,所以x1+x2=2x(-b/2a)=-b/a所以f(x1+x2)=f(-b/a)=c
作N到准线的垂线NH交准线于H点.根据抛物线的定义可知|NH|=|NF|,所以在△NOM中,|NM|=2|NH|,所以∠NMH=45°.所以在△MFO(O为准线与y轴交点)中,∠FMO=45°,所以|
[f(x1)-f(x2)]/[(x1-x2)]>0,(1)x1f(x2),所以,是递增的;所以,选Aps:事实上这个式子是单调递增的等价定义,相应的还有[f(x1)-f(x2)]/[(x1-x2)]