求可逆矩阵p,使得对角矩阵a=7-12610-191012-2413
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:21:30
1、先令|A-λE|=0求出特征值为λ1=1,λ2=6,λ3=-6;2、分别代入(A-λE),进行初等变换变为行最简型,得到基础解系ξ1=(-2,0,1),ξ2=(1,1,-1)ξ3=(1,-1,2)
充分性:因为P、Q可逆,所以P,Q可以分解成若干个基本初等矩阵的积,所以A~B必要性:因为A~B,所以A经过若干次初等行列变换后成为B,即PAQ=B,(P、Q可逆)
构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
设对应的二次型矩阵A的特征值为λ则|A-λE|=-λ-11-1-λ111-λ第2列加上第3列=-λ01-1-λ+1111-λ-λ第3行减去第2行=-λ01-1-λ+1120-λ-1按第2列展开=(-λ
步骤:1、求特征值;2、带入特征值求特征向量;3、分别对特征向量正交化、单位化;4、处理后的特征向量组成可逆矩阵P;5、对角元素为特征值的对角矩阵即为所求Q.你自己按步骤来做,这比我给答案你更好,不懂
第一步.计算A的特征多项式f(x)=|xE-A|=(x-7)^2(x+2),从而A的特征值为x_1=7,x_2=-2第二步求特征值的线性无关的特征向量特征值7的特征向量满足(7E-A)X=0,解方程组
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
|A-λE|=(1-λ)^2(6-λ).A的特征值为1,1,6(A-E)X=0的基础解系为:a1=(0,1,0)',a2=(1,0,-1)'(A-6E)X=0的基础解系为:a3=(1,3,4)'令P=
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,并不要求P是正交矩阵,但可以要求P是正交矩阵.
解:|A-λE|=1-λ-333-5-λ36-64-λr1-r2,r3-2r2-2-λ2+λ03-5-λ304+2λ-2-λc2+c1+2c3-2-λ0034-λ300-2-λ=(4-λ)(2+λ)^
对角阵对角线上元素正是A的特征值!再问:那这特征值是不是随意排在对角阵的对角线上啊?
|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X
设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去
对于二次型,矩阵A都是要求为实对称矩阵.实对称矩阵可以对角化,就是说,存在可逆矩阵P,使得P^{-1}AP为对角矩阵,这里P^{-1}表示P的逆矩阵.具体求法就如你所说,先求出A的特征根,以及分别对应
|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,
这类题麻烦.|A-λE|=-1-λ-123-5-λ62-22-λc1+c2-2-λ-12-2-λ-5-λ60-22-λr2-r1-2-λ-120-4-λ40-22-λ=(-2-λ)[(-4-λ)(2-
P=1-2-1/301-1/3001--------问题实则对A进行同样的行列初等变换,化为对角矩阵.对A进行列初等变换,把A化为下三角矩阵,找到P
题目要求是求合同变换,可以用配方法或初等变换用特征值特征向量也可以,但要正交化单位化.这太麻烦了!再问:A的主对角元素都是零。。用配方法怎么做,能给详细点步骤吗再答:先凑成非零的手机回复,不好写