求可逆矩阵p,使得对角矩阵a=7-12610-191012-2413

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:21:30
求可逆矩阵p,使得对角矩阵a=7-12610-191012-2413
A=(0 2 -2 2 4 4 -2 4 -3) 求一可逆矩阵P,使P*-1AP为对角矩阵.

1、先令|A-λE|=0求出特征值为λ1=1,λ2=6,λ3=-6;2、分别代入(A-λE),进行初等变换变为行最简型,得到基础解系ξ1=(-2,0,1),ξ2=(1,1,-1)ξ3=(1,-1,2)

证明:矩阵A~B的充要条件是存在可逆矩阵P,Q使得PAQ=B

充分性:因为P、Q可逆,所以P,Q可以分解成若干个基本初等矩阵的积,所以A~B必要性:因为A~B,所以A经过若干次初等行列变换后成为B,即PAQ=B,(P、Q可逆)

求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置

构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,

已知矩阵A,求可逆矩阵P.使得P^-1AP为对角矩阵 我已经求出A的特征值为0,5

对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且

设矩阵A=0,-1,1;-1,0,1;1,1,0求一个可逆矩阵p,使p-1AP为对角阵

设对应的二次型矩阵A的特征值为λ则|A-λE|=-λ-11-1-λ111-λ第2列加上第3列=-λ01-1-λ+1111-λ-λ第3行减去第2行=-λ01-1-λ+1120-λ-1按第2列展开=(-λ

对于A=2 -1 -1 -1 2 -1 -1 -1 2 求出可逆矩阵P使得P^-1AP为对角矩阵Q,并写出对角矩阵Q.

步骤:1、求特征值;2、带入特征值求特征向量;3、分别对特征向量正交化、单位化;4、处理后的特征向量组成可逆矩阵P;5、对角元素为特征值的对角矩阵即为所求Q.你自己按步骤来做,这比我给答案你更好,不懂

设矩阵A是 3 -2 -4 求正交矩阵P 使得P的转置乘以A再乘以P=对角矩阵.

第一步.计算A的特征多项式f(x)=|xE-A|=(x-7)^2(x+2),从而A的特征值为x_1=7,x_2=-2第二步求特征值的线性无关的特征向量特征值7的特征向量满足(7E-A)X=0,解方程组

设A为可逆n阶方阵,证明存在正交矩阵P,Q使得PAQ为对角矩阵

这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··

六、已知矩阵 求可逆矩阵P和对角矩阵∧,使A与对角矩阵∧相似,即有P-1AP=∧..

|A-λE|=(1-λ)^2(6-λ).A的特征值为1,1,6(A-E)X=0的基础解系为:a1=(0,1,0)',a2=(1,0,-1)'(A-6E)X=0的基础解系为:a3=(1,3,4)'令P=

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,什么时候P要求是正交矩阵?

求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,并不要求P是正交矩阵,但可以要求P是正交矩阵.

已知A=(1 -3 3…,求3阶可逆矩阵P和3阶对角矩阵,是的P^-1AP=3阶对角矩阵.

解:|A-λE|=1-λ-333-5-λ36-64-λr1-r2,r3-2r2-2-λ2+λ03-5-λ304+2λ-2-λc2+c1+2c3-2-λ0034-λ300-2-λ=(4-λ)(2+λ)^

线性代数中给定一个方阵A 如何求出一个可逆矩阵P和对角阵x(这个符号打不出来)使得 p^(-1)*AP=x

对角阵对角线上元素正是A的特征值!再问:那这特征值是不是随意排在对角阵的对角线上啊?

矩阵A 求可逆矩阵P 使得P^-1AP是对角矩阵 并写出这一对角矩阵

|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X

矩阵A=400 031 013 求一个可逆矩阵P,使得P^-1AP=∧为对角阵

设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去

高等代数矩阵二次型知道一个矩阵A,求可逆矩阵P,使得PTAP 为对角矩阵.则可以先求出A的特征根,以及分别对应各个根的特

对于二次型,矩阵A都是要求为实对称矩阵.实对称矩阵可以对角化,就是说,存在可逆矩阵P,使得P^{-1}AP为对角矩阵,这里P^{-1}表示P的逆矩阵.具体求法就如你所说,先求出A的特征根,以及分别对应

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

设矩阵A= 求一个可逆矩阵P,使P-1 AP为对角阵,并给出该对角阵

这类题麻烦.|A-λE|=-1-λ-123-5-λ62-22-λc1+c2-2-λ-12-2-λ-5-λ60-22-λr2-r1-2-λ-120-4-λ40-22-λ=(-2-λ)[(-4-λ)(2-

高数二次型难题!1 2 1对矩阵A = 2 1 1,求一可逆矩阵P,使P^TAP是对角矩阵形式.(P^T表示P转置矩阵)

P=1-2-1/301-1/3001--------问题实则对A进行同样的行列初等变换,化为对角矩阵.对A进行列初等变换,把A化为下三角矩阵,找到P

设矩阵A=第一行0 1 -2 第二行1 0 -1第三行-2 -1 0,求可逆矩阵C,使得CtAC为对角阵

题目要求是求合同变换,可以用配方法或初等变换用特征值特征向量也可以,但要正交化单位化.这太麻烦了!再问:A的主对角元素都是零。。用配方法怎么做,能给详细点步骤吗再答:先凑成非零的手机回复,不好写