求双曲线9y²-16x²=144的实半轴长和虚半轴长,焦点坐标,离心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:07:39
方程:x^2/9-y^2/16=1a^2=9,b^2=16,c^2=9+16=25即c=5,故焦点坐标是(-5,0)和(5,0)离心率e=c/a=5/3渐近线方程是y=±b/ax=±4/3x
椭圆X^2/9+y^2/25=1a=5,b=3所以c=4e=c/a=4/5所以焦点是(0,4),(0,-4)所以双曲线的离心率是14/5-4/5=2设双曲线是y^2/m^2-x^2/n^2=1则c^2
楼主问题打错了吧,应该是角F1PF2…………a=3,b=4则c=5|F1F2|=2c=10|PF1-PF2|=2a=6cos∠F1PF2=(PF1²+PF2²-F1F2²
假设pf1大则有方法如下pf1-pf2=6pf1*pf2=3求出cos角f1pf2=(pf1^2+pf2^2-f1f2^2)/(2*pf1*pf2)=[(pf1-pf2)^2+2*pf1*pf2-f1
1)由题得:a=3,b=4,c=5所以,焦点坐标:F1(-5,0),F2(5,0)离心率:e=c/a=5/3渐近线方程:y=(4/3)x和y=-(4/3)x2)由双曲线的定义:||PF1|-|PF2|
楼上的是对的.可是焦点三角形面积公式不是高中数学考试中可以直接用的公式.可设|PF2|=n,|PF1|=8+n,|F1F2|=10根据余弦定理10^2=n^2+(8+n)^2-2*n*(8+n)*co
椭圆的方程为x²/9+y²/25=1,a=5,b=3.c=4e=c/a,e=4/5双曲线的离心率等于14/5-4/5=2因为双曲线的焦点c=4,e=c/a=4/a=2,所以a=2b
设x-y/2=a,将之带入双曲线方程,最后等式中只存在a与x或者是a与y,然后根据x小于-3或x大于3与y是一切实数即可求得a的范围.
先求出x²/16-y²/9=1的焦点坐标(-5,0),(5,0),横坐标右移8.得出本题焦点坐标(-13,0),(-3,0).
由题意,两个焦点为F1(-5,0);F2(5,0)PF1⊥PF2,也就是说OP=F1F2/2=c=5其实P点就是圆x^2+y^2=25与双曲线x^2/9-y^2/16=1计算:144=16x^2-9y
x²/9+y²/25=1的焦点为(0,4),离心率为4/5,所以双曲线离心率为14/5-4/5=2双曲线中c=4,e=2,所以a=2,所以b²=16-4=12,所以双曲线
x/9+y/25=1的焦点为(0,4),离心率为4/5,所以双曲线离心率为14/5-4/5=2双曲线中c=4,e=2,所以a=2,所以b=16-4=12,所以双曲线方程为y/4-x/12=1
解题思路:双曲线的定义解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
双曲线的顶点是(-4,0)和(4,0)双曲线的右焦点是(5,0)焦点=(p/2,0)即p=5所以,抛物线方程是y^2=10x+4(顶点是4,0)抛物线方程是y^2=10x-4(顶点是-4,0)
令点P在曲线右支上,则|PF1|-|PF2|=2a=6由题意得:|F1F2|=2c=10由余弦定理得:|F1F2|^2=|PF1|^2+|PF2|^2-2|PF1||PF2|cos60º→1
由双曲线定义可得:〔F1〕-〔F2〕=2a=2*4=8;由解析式可得焦点(-5,0)(5,0)2c=10;PF1垂直于PF2利用勾股定理可得|PF1|²+|PF2|²=4c&sup
(9/4)^2/9-5^2/16=λ=-1(y^2/16)-(x^2/9)=1实轴长2*4=8虚轴长2*3=6焦点坐标(0,±5)离心率5/4渐近线方程y=±4/3设M(t,s),L:y=x+s-tx
椭圆中a1=5,b1=3,c=25-9=16,c=4∴焦点(0,4),和(0,-4),椭圆离心率c/a1=4/5∴双曲线离心率c/a2=4/a2=14/5-4/5=2∴a2=2,b2=c-a2=16-
因为椭圆性质a>=b 所以椭圆方程为y^2/25+x^/9=1 所以椭圆焦点为(0.4)(0.-4)椭圆离心率为c比a e=4比5 因离心率和为14/5 &
设∠F1PF2为θ则cosθ=(PF1^2+PF2^2-F1F2^2)/2PF1PF2=[(PF1-PF2)^2+2PF1PF2-F1F2^2]/2PF1PF2=[4a^2+2*32-4c^2]/2*