求函数y=3sin(π 3-x 2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:55:00
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
∵y=cos(x2-π3)的单调递减区间即为y=-cos(x2-π3)的单调递增区间,由2kπ≤x2-π3≤2kπ+π(k∈Z)得:2π3+4kπ≤x≤8π3+4kπ(k∈Z),∴函数y=-cos(x
把两个三角函数展开,得y=3/2sinx-√3/2cosx合并成:y=√3sin(x-π/6)单调区间是(-π/3,2π/3)增(2π/3,5π/3)减其中都要加上2kπ,我就不写了
∵(π3+4x)+(π6-4x)=π2,∴cos(4x-π6)=cos(π6-4x)=sin(π3+4x),∴原式就是y=2sin(4x+π3),这个函数的最小正周期为2π4,即T=π2.当-π2+2
y=sin³x-sin3x→y'=3sinx·(sinx)'-cos3x·(3x)'→y'=3sin²xcosx-3cosx→y'=3(1-cos²x)cosx-3cos
y=sin(π3+x)cos(π3-x)=(32cosx+12sinx)(12cosx+32sinx)=34+sinxcosx=34+12sin2x当函数y=sin(π3+x)cos(π3-x)取得最
y=x2+2x+1/(x2+2x+3)=(x+1)2/(x2+2x+3)当分母一定时,分子越小越好(x2+2x+3)=(x+1)2+2永远大于零当(x+1)2越小越好而X=-1时y=x2+2x+1/(
设√(x2+3)=t(t>=√3),则x2+4=t2+1,原式=(t2+1)/t=t+1/t.当t=√3即x=0时取到最小值4√3/3
y=1nsinxy'=(1/sinx)*(sinx)'=tanxy=1/3x3+x2-x+3y'=x^2+2x-1函数y=sin(3x+2)的微分dy=3cos(3x+2)dx
由2x^2-3x+4>=0得x∈R,由x^2-2x>=0得x=2,因此函数定义域为(-∞,0]U[2,+∞),1、在区间(-∞,0]上,由于2x^2-3x+4=2(x-3/4)^2+23/8,开口向上
记u=√(x^2+y^2),则(x,y)→(0,0)时,u→0,问题转化为一元函数极限:lim(u→0)(u-sinu)/u^3,用洛必达法则得结果1/6
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
函数y=2sinπx-√(3x-x2)的零点,即方程2sinπx=√(3x-x2)的解方程两边都关于x=3/2对称,那么只要判断解的个数就可以.f(x)=2sinπx,g(x)=√(3x-x2)(两函
[3/2,13/4]
sinx的减区间是(2kπ+π/2,2kπ+3π/2)所以这里2kπ+π/2
由题意x∈[0,π2],得x+π3∈[π3,5π6],∴sin(x+π3)∈[12,1]∴函数y=sin(x+π3)在区间[0,π2]的最小值为12故答案为12
根据x>0可得函数y=2x2+3x=2x2+32x+32x≥332x2•32x•32x=3392,当且仅当2x2=32x 时,取等号,故函数的最小值为3392.
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数