求函数y=3sin(2x-四分之兀)的周期和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:11:15
函数的周期T=2πω=2π2=π,由-π2+2kπ≤2x+π3≤π2+2kπ,解得−5π12+kπ≤x≤π12+kπ,即函数的递增区间为[−5π12+kπ,π12+kπ],k∈Z,由2x+π3=π2+
∵y=sin(2x+π3),∴由2kπ−π2≤2x+π3≤2kπ+π2,k∈Z.得kπ-5π12≤x≤kπ+π12,k∈Z.∴当k=0时,递增区间为[0,π12],当k=1时,递增区间为[7π12,π
y=sin²x+cos8x+2sinxcosx+2cos²x=1+sin2x+(1+cos2x)=sin2x+cos2x+2=√2sin(2x+π/4)+2-1
y=x-sinx/2cosx/2y=x-sin(x/2)cos(x/2)=x-(1/2)sinxdy/dx=1-(1/2)cosxy=x^3+3^xy=x^3+3^x,y'=3x^2+3^xln3
2kπ-π/2≤2x+π/3≤2kπ+π/2得:kπ-5π/12≤x≤kπ+π/12增区间是:[kπ-5π/12,kπ+π/12],其中k∈Zx∈[-π/6,π/6],则:2x+π/3∈[0,2π/3
把两个三角函数展开,得y=3/2sinx-√3/2cosx合并成:y=√3sin(x-π/6)单调区间是(-π/3,2π/3)增(2π/3,5π/3)减其中都要加上2kπ,我就不写了
y=sin³x-sin3x→y'=3sinx·(sinx)'-cos3x·(3x)'→y'=3sin²xcosx-3cosx→y'=3(1-cos²x)cosx-3cos
sin(2x-π/4)>0且求sin(2x-π/4)的增区间即可2kπ
∵x∈(-π/6,π); ∴2x+π/3∈(0,2π+π/3); 则函数y的最大值为1,最小值为-1; 则y∈【-1,1】
y=sin^2x+sinx=(sin^2x+sinx+1/4)-1/4=(sinx+1/2)^2-1/4sinx=-1/2时有最小值-1/4sinx=1时有最大值2
不知道sinx是指数还是其他的,如果是y=xsinx的话,f'(x)=sinx+xcosx,如果sinx是x的指数的话,f'(x)=(sinx-1)*x^(sinx-1)
要搞清楚变换的过程,从sinx到sin(2x)周期变为原来的1/2,再到sin(2x+pi/6),即为sin(2(x+pi/12)),是向左平移了pi/12个单位长度.所以[-pi/6,pi/6]上式
2*cos(x^2)*x/sin(x)^2-2*sin(x^2)*cos(x)/sin(x)^3
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
sinx的减区间是(2kπ+π/2,2kπ+3π/2)所以这里2kπ+π/2
题目是否有问题dy/d(x^3)=(3x^2)dy/dxdy/dx=cos(x^2)*2x所以:dy/d(x^3)=(3x^2)dy/dx=(6x^3)cos(x^2)
答:因为:(sinx)'=cosxy=-(sinx)^2y'(x)=-2sinx*(sinx)'y'(x)=-2sinxcosxy'(x)=-sin(2x)
y=2sin²x+cosx+3=-2cos²x+cosx+5=-2(cosx-1/4)²+41/8cosx=1/4,max(y)=41/8cosx=-1,min(y)=2
原式=(1-cos2x)/2+(sin2x)/2+2=(sin2x-cos2x)/2+5/2=(sin(2x-45度))*(根号2)/2+5/2所以是大于(根号2+5)/2,小于(5-根号2)/2
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数