求函数y=2-x 1在x=-1处的导数,并求曲线在该处的切线方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:24:25
求函数y=2-x 1在x=-1处的导数,并求曲线在该处的切线方程
已知三次函数y=f(x)有三个零点x1 x2 x3 且在点(x1,f(x1))处的切线斜率为ki(i=1,2,3),则1

由题意,f(x)=a(x-x1)(x-x2)(x-x3)则f'(x)=a(x-x2)(x-x3)+a(x-x1)(x-x3)+a(x-x1)(x-x2)令S=a(x1-x2)(x1-x3)(x2-x3

若函数y=3+x2ln(1+x1−x

令g(x)=x2ln(1+x1−x),x∈[-12,12],则g(-x)=x2ln(1−x1+x)=-g(x),即g(x)为奇函数,∴g(x)max+g(x)min=0,∵3+x2ln(1+x1−x)

初三一道函数题已知一次函数y=x+m与反比例函数y=(m+1)/x的图像在第一象限内的交点为P(x1,3)(1)求x0的

由题意得一次函数y=x+m与反比例函数y=(m+1)/x都经过点(x1,3)可得方程组x+m=3解得X1=1m=2m+1=3X∴一次函数y=x+2反比例函数y=3/x

已知函数y=x的平方-4x+1.(1)求函数的最小值.(2)设函数图像与x轴的交点为A(X1,0)B(X2,0)求X1的

一般式y=a*(x的平方)+b*x+c;当a大于0时,y有最小值,因为定义域为全体实数,所以最小值点在对称轴上,即x=-b/(2*a);求出x=2;所以最小值y=-3;因为x1+x2=-b/a;x1*

设函数f(x)=x^2,x1 在x=1处可导,求a,b值

可导则连续f(1)=1^2=1则x趋于1+,ax+b极限是1所以a+b=1可导则左右导数xian相等(x^2)'=2x所以左导数=2(ax+b)'=a则右导数=a=2所以a=2,b=1-a=-1

已知函数f(x)=a+x x1在x=1处连续,试求a的值

f(x)=a+xx1在x=1处连续左极限x→1-Limf(x)=a+1右极限x→1+Limf(x)=0在x=1处的值f(x=1)=a+1以上三者相等:a=-1

函数f(x)={2/(1+x平方),x1},在x=1处连续且可导,求a、b的值

在x=1可导,就是在x=1处连续所以y=2/(1+x²)在x=1的斜率和ax+b的斜率相同且y=ax+b当x=1时y=2/(1+1²)=1,所以a+b=1当x﹤=1时y'=4x/(

函数y=f(x)在x1处可导,且f'(x1)=2,则曲线y=f(x)在点[x1,f(x)]切线与x轴是什么关系 平行还是

你的问题应该是曲线y=f(x)在点[x1,f(x1)]处切线与x轴的关系是什么,答案是.由于f'(x1)=2.所以y=f(x)在点[x1,f(x1)]处的斜率是2从而求出与x轴的关系是.与x轴的夹角为

设函数y=f(x)的图像关于直线x=1对称,在x1时,求y=f(x)的解析式

f(x)有性质:对于任意a>0,f(1-a)=f(1+a).当x>1时,(x-1)>0,故x>1时:f(x)=f[1+(x-1)]=f[1-(x-1)]=f(2-x)这时:1-(x-1)=(2-x)1

函数y=ln1+x1−x

令t=1+x1−x>0,求得-1<x<1,故函数的定义域为(-1,1),y=lnt,故本题即求函数t在定义域内的增区间.由于t=-x+1x−1=-x−1+2x−1=-1-2x−1 在区间(-

求下列函数的间断点,并判断其类型,y=x-1,x1

∵右极限f(1+0)=lim(x->1+)(3-x)=3-1=2左极限f(1-0)=lim(x->1-)(x-1)=1-1=0即函数在点x=1处左右极限存在,但不相等.∴根据间断点分类定义知,点x=1

求函数y=x1/2(x的二分之一次方)的极限.

这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,

在函数y=2^x中,当x2>x1>0时,f[(x1+x2)/2]

f[(x1+x2)/2]=2^[(x1+x2)/2][f(x1)+f(x2)]/2=(2^x1+2^x2)/2由基本不等式(2^x1+2^x2)/2≧√[(2^x1)(2^x2)]=2^[(x1+x2