求函数y=2-x 1在x=-1处的导数,并求曲线在该处的切线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:24:25
由题意,f(x)=a(x-x1)(x-x2)(x-x3)则f'(x)=a(x-x2)(x-x3)+a(x-x1)(x-x3)+a(x-x1)(x-x2)令S=a(x1-x2)(x1-x3)(x2-x3
令g(x)=x2ln(1+x1−x),x∈[-12,12],则g(-x)=x2ln(1−x1+x)=-g(x),即g(x)为奇函数,∴g(x)max+g(x)min=0,∵3+x2ln(1+x1−x)
由题意得一次函数y=x+m与反比例函数y=(m+1)/x都经过点(x1,3)可得方程组x+m=3解得X1=1m=2m+1=3X∴一次函数y=x+2反比例函数y=3/x
当X1
一般式y=a*(x的平方)+b*x+c;当a大于0时,y有最小值,因为定义域为全体实数,所以最小值点在对称轴上,即x=-b/(2*a);求出x=2;所以最小值y=-3;因为x1+x2=-b/a;x1*
可导则连续f(1)=1^2=1则x趋于1+,ax+b极限是1所以a+b=1可导则左右导数xian相等(x^2)'=2x所以左导数=2(ax+b)'=a则右导数=a=2所以a=2,b=1-a=-1
f(x)=a+xx1在x=1处连续左极限x→1-Limf(x)=a+1右极限x→1+Limf(x)=0在x=1处的值f(x=1)=a+1以上三者相等:a=-1
在x=1可导,就是在x=1处连续所以y=2/(1+x²)在x=1的斜率和ax+b的斜率相同且y=ax+b当x=1时y=2/(1+1²)=1,所以a+b=1当x﹤=1时y'=4x/(
你的问题应该是曲线y=f(x)在点[x1,f(x1)]处切线与x轴的关系是什么,答案是.由于f'(x1)=2.所以y=f(x)在点[x1,f(x1)]处的斜率是2从而求出与x轴的关系是.与x轴的夹角为
f(x)有性质:对于任意a>0,f(1-a)=f(1+a).当x>1时,(x-1)>0,故x>1时:f(x)=f[1+(x-1)]=f[1-(x-1)]=f(2-x)这时:1-(x-1)=(2-x)1
这就是求分段函数的值.x
令t=1+x1−x>0,求得-1<x<1,故函数的定义域为(-1,1),y=lnt,故本题即求函数t在定义域内的增区间.由于t=-x+1x−1=-x−1+2x−1=-1-2x−1 在区间(-
∵右极限f(1+0)=lim(x->1+)(3-x)=3-1=2左极限f(1-0)=lim(x->1-)(x-1)=1-1=0即函数在点x=1处左右极限存在,但不相等.∴根据间断点分类定义知,点x=1
这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,
f[(x1+x2)/2]=2^[(x1+x2)/2][f(x1)+f(x2)]/2=(2^x1+2^x2)/2由基本不等式(2^x1+2^x2)/2≧√[(2^x1)(2^x2)]=2^[(x1+x2
y=1/2xx0所以当x1