求函数u=xy yz zx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:02:02
X为离散型,但U是连续型的
用换元法,设X+3=t,则X=T-3,带入得f(T)=(T-3)5,所以f(x)=(x-3)5,所以导数就是5(X-3)4,你肯定懂啦!
X~U(0,1)所以fx(x)=10
那个U是平均分布吧?是的话就这么做:取小区间dy,则dy=2x*dx,值为dy的概率就是dp=0.5*dx,则概率密度:f=dp/dy=0.5*dx/(2x*dx)=1/(4x)=1/(4*y^0.5
3f(x)+f(-1/x)=2x-x(1)令x=-1/x则3f(-1/x)+f(x)=2/x+1/x(2)(1)×3-(2)8f(x)=6x-3x-2/x+1/x所以f(x)
令u=2x^2-y^2,v=xy然后链导法则!再问:请您把详细过程给我好吗?再答:偏导数符号打不上去啊du=(4xfu+yfv)dx+(-2yfu+xfv)dy其中fu、fv是偏导数符号
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.
/>f[u(x)]=u²(x)=e^2x(e的2x次方)u[f(x)]=e^f(x)=e^x²(e的x²次方)f[f(x)]=f²(x)=x⁴
怎么是u-v啊?觉得应该是实部虚部是两个式子吧验证两者满足二维拉普拉斯方程后用柯西黎曼方程,然后求积分吧u-v的话我也看不懂…
y=xf(u),u=x^2,u'=2xy'=f(u)+xf'(u)u'=f(u)+2x^2f'(u)y"=f'(u)+4xf'(u)+2x^2f"(u)u'=f'(u)+4xf'(u)+4x^3f"(
∂u/∂x=[∂u/∂(xy)][d(xy)/dx]+[∂u/∂(x/y)][d(x/y)/dx]=yf₁'+(1/
v'y=2x,因此u'x=v'y=2x,积分得u=x^2+g(y),又由于u'y=-v'x,所以g'(y)=-2y,g(y)=-y^2+c,故u=x^2-y^2+c,f(z)=x^2-y^2+c+2i
错了,偏导数公式里面分子分母是一个整体,不能拆分,这和微分求导数不一样,微分可以拆分的
设sinx=t,则t属于[-1,1]y=t^2+2at-a-2,对称轴x=-a1、当-a属于[-1,1]时,在t=-a处取到最小值y=a^2-2a^2-a-2=-a^2-a-2;2、当-a1时,在t=
先设V=sinx,-1≤V≤1,代入原式,就得到了一个关于V的式子,把a当成常量,化成我们常见的式子,比如是关于V的二次函数,当V取对称轴时候,函数取最值,当然V得在【-1,1】之间取.把取最值的V代
偏导数x=cos(x^2+y^2+z^)*2x同理想y,z的偏导数只是把cos()外边的x换成相应的y,z即可
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系