求函数f(x)=根号下x x在[2., 无穷]上的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:15:51
对的f(x)定义域包含x=0但f'(x)定义域可以不包含x=0因为这里表示x=0时导数不存在而已再问:点(0,0)没有切线?再答:有切线但没有斜率因为垂直x轴再问:那(0,0)的f‘(x)不存在?再答
易知,函数f(x)=√[(x-1)²+1]+√[(x-4)²+9]的意义即是:x轴上的一动点P(x,0)到两定点M(1,1),N(4,-3)的距离之和,即f(x)=|PM|+|PN
证明:f(x)=√x,x的定义域为(0,+无穷)所以f(x)的导数为1/(2√x)在定义域为(0,+无穷)恒大于0所以函数f(x)=根号下x在(0,+无穷)上是增函数
f′(x)=(x−1)−x(x−1)2=−1(x−1)2,当x∈[2,5]时,f′(x)<0,所以f(x)=xx−1在[2,5]上是减函数,所以f(x)的最大值为f(2)=22−1=2,最小值为f(5
令x1>x2>=1f(x1)-f(x2)=√(x1-1)-√(x2-1)=[√(x1-1)-√(x2-1)][√(x1-1)+√(x2-1)]/[√(x1-1)+√(x2-1)]=(x1-1-x2+1
设-2<x1<x2f(x1)-f(x2)=√(x1+2)-√(x2+2)=〔√(x1+2)-√(x2+2)〕〔√(x1+2)+√(x2+2)〕/〔√(x1+2)+(√x2+2)〕=x1-x2/〔√(x
y=√[(x-0)²+(0+1)²]+√[(x-2)²+(0-2)²]这是x轴上的O(x,0)到两点A(0,-1),B(2,2)的距离的和显然APB在一直线,且
由x²-x-2=(x+1)(x-2)>0得A={x|x<-1或x>2},由3-│x│≥0得B={x|-3≤x≤3},A∩B={x|-3≤x<-1或2<x≤3},A∪B={x|x∈R}.
有疑问欢迎追问,再问:讨论函数f(x)=ax/x的平方-1在(-1,1)上的单调性,其中a是非零常数,谢谢,有追加奖励。再答:希望能帮助你,有疑问欢迎追问,多追加奖励哦,嘻嘻,谢谢!祝学习进步!
a=0时定义域是Ra不等於0时1-ax>=0
求的定义域为大于等于4或者小于等于0.当x大于等于4时,根号下x^2-2x为增函数,2^根号下x^2-5x+4也是;x小于等于0时根号下x^2-2x为减函数,2^根号下x^2-5x+4也是.所以f(x
任取实数x1,x2,且x1>x2≥0.f(x1)-f(x2)=√x1-√x2=(√x1-√x2)/1……分子分母同乘以√x1+√x2=(x1-x2)/(√x1+√x2)>0,所以f(x)=√x在[0,
f(x)=x-2根号下x=x-2√x=(√x-1)^2-1当x=1函数最小值-1当x=4或x=0,函数最大值0
x=0根号下不能为负,所以x>=0,-x>=0,x=0
f(x)=√(x^2+1)-x=[√(x^2+1)-x]/1=[√(x^2+1)-x]/[(x^2+1)-x^2]=[√(x^2+1)-x]/{[√(x^2+1)]^2-x^2}=[√(x^2+1)-
如果你学过导数,可以直接求出减区间是[1/2,+∞)如果没有,证明看附图:
f(x)=√(1-x^2)/(2-|2-x|),f(x)的定义域由1-x^2>=0,2-|2-x|≠0确定,解得-1
设√x+1=tx=(t-1)²f(√x+1)=f(t)=(t-1)²+2(t-1)=t²-2t+1+2t-2=t²-1所以f(x)=x²-1