求不定积分∫x的3次方根号下(x 2)的平方dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:10:53
还有问题就追问,
设t=x开6次方x=t^6dx=6t^5dt∫dx/[(根号x)+x开3次方]=∫6t^5dt/(t^3+t^2)=6∫t^3dt/(t+1)=6∫(t^3+1)dt/(t+1)-6∫dt/(t+1)
∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa
Sx*根号下(1+x^2)dx=1/2*S(1+x^2)^(1/2)*d(1+x^2)=1/3*(1+x^2)^(3/2)+c
∫√(e^x+1)dx令:√(e^x+1)=te^x+1=t^2x=ln(t^2-1)dx=(t^2-1)^(-1)*(2t)原式=∫2t^2/(t^2-1)dt=2∫t^2/(t^2-1)dt=2[
作代换t=√x,则dx=2tdt原式=∫[2te^t]dt=∫2tde^t=2te^t-∫2e^tdt=2te^t-2e^t=2[(√x)-1]e^√x
很高兴为你解答,祝你学习进步求采纳
∫x.e^x/√(e^x-1)dx=2∫xd√(e^x-1)=2x√(e^x-1)-2∫√(e^x-1)dxlete^(x/2)=seca(1/2)e^(x/2)dx=(tana)^2dadx=2(t
=§1/tdln(t*t-1)=§[1/(t-1)-1/(t+1)]dt=ln(t-1)/(t+1)+c再代回去!第二题两次分部积分,易得为1/2x[coslnx+sinlnx]
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
原式=-∫{x^3arccosx/[-√(1-x^2)]}dx =-∫x^3arccosxd(arccosx) =-(1/2)∫x^3d[(arccosx)^2] =-(1/2)x^3(arcc
被积函数[x/(1-x³)]^(½)的定义域为x
令t=根号(1-e^(2x))则x=1/2*ln(1-t^2)dx=t/(t^2-1)原式=积分(1/t*t/(t^2-1))dt=积分1/(t^2-1)dt=积分[1/2*(1/(t-1)-1/(t
再问:可以细致的告诉我x是怎么化出来的吗?
我大致说一下吧,把等式换成常数+或者-一个分子没有x的式子,然后将这个式子拆分,答案应该是c【x+ln(ax+b)-ln(ax-b)】abc都是常数再问:�ܽ���
∫e^(x/2)dx=2e^(x/2)+c
求不定积分:∫[x/√(x-3)]dx令x-3=u²,则x=u²+3,dx=2udu;于是:原式=2∫[(u²+3)/u]udu=2∫(u²+3)du=2[u&