求不定积分∫x/1 x²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:29:34
求不定积分∫x/1 x²
求不定积分∫x根号1-x^2dx

=-1/2∫√(1-x^2)d(1-x^2)=-1/2×2/3√(1-x^2)^3+C=-1/3√(1-x^2)^3+C

求不定积分∫x/(1+4x)dx

x/(1+4x)=(x+1/4-1/4)/(1+4x)=[1/4(4x+1)-1/4]/(1+4x)=1/4-1/4(1+4x)∫x/(1+4x)dx=∫1/4-1/4(1+4x)dx=x/4-1/1

∫(x+1)*e^(-x)dx 求不定积分

∫(x+1)*e^(-x)dx=-∫(x+1)*de^(-x)=-(x+1)*e^(-x)+∫e^(-x)d(x+1)=-(x+1)*e^(-x)+∫e^(-x)dx=-(x+1)*e^(-x)-e^

求不定积分∫(2x²)/(x²+1)dx

差不多就这样再答:

求不定积分∫dx/(1+x^4)

∫[1/(1+x^4)]dx=1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx=1/2{∫(x^2+1)/(1+x^4)dx-∫(x^2-1)/(1+x^4)dx}=1/2{∫(1+1/

求不定积分 arcsinx的不定积分 e^√x+1的不定积分 (x-1)lnx的不定积分

答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,

不定积分习题求不定积分∫(x^2-1)sin2xdx

∫(x^2-1)sin2xdx先括号拆开=∫x^2*sin2xdx-∫sin2xdx=-1/2*∫x^2dcos2x-1/2*∫sin2xd2x先凑微分=-1/2*∫x^2dcos2x-1/2*∫si

求不定积分∫(e^x-1) / (e^x +1)

e^x=y∫(e^x-1)/(e^x+1)dx=∫(y-1)/(y+1)/ydy=∫(2/(y+1)-1/y)dy=2ln(y+1)-ln(y)=2ln(e^x+1)-ln(e^x)=2ln(e^x+

求不定积分∫1/(e^x)dx

∫1/(e^x)dx=∫(e^-x)dx=-e^(-x)+C

不定积分符号[(x+1)/x^2+xlnx]dx,求不定积分

原式=∫(x+1)/x²+∫xlnxdx=∫x/x²+∫1/x²+1/2∫lnxdx²=∫1/x+∫1/x²+1/2*x²lnx-1/2∫x

求下列不定积分:∫ln(1+x)/(1+x)dx

∫ln(1+x)/(1+x)dx=∫ln(1+x)/(1+x)d(1+x)=∫ln(1+x)dln(1+x)=[ln(1+x)]²/2+C

求不定积分:∫[x(e^x)]/[(1+x)^2]dx

很简单啊,好好观察形状就好解了

求不定积分∫xln(x+1)dx

∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2

求不定积分?∫ ln(x+1) dx

∫ln(x+1)dx=∫ln(x+1)d(x+1)=(ln(x+1))(x+1)-∫(x+1)d(ln(x+1))=(x+1)ln(x+1)-∫((x+1)/(x+1))dx=(x+1)ln(x+1)

求不定积分∫(x^2-3x)/(x+1)dx

∫(x^2-3x)/(x+1)dx=∫[(x+1)(x-4)/(x+1)+4/(x+1)]dx=∫(x-4)dx+∫4/(x+1)dx=x²/2-4x+4ln(x+1)+C其中C为任意常数

求不定积分∫ 1+lnx/x *dx

∫1+lnx/x*dx=∫1/x*dx+∫lnx/x*dx=lnx+∫lnxdlnx=lnx+(lnx)^2+c再问:请问这是完整答案吗,因为本人是数学白痴,不好意思再答:是的完整的答案

∫dx/(1+x²)求不定积分

令x=tany,dx=sec²ydy∫dx/(1+x²)=∫(sec²ydy)/(1+tan²y)=∫(sec²ydy)/(sec²y),恒

求不定积分 ∫(X^2+1)/(X^4+1)dx

积分:(x^2+1)/(x^4+1)dx=积分:(1+1/x^2)/(x^2+1/x^2)dx(上下同时除以x^2)=积分:d(x-1/x)/[(x-1/x)^2+(根号2)^2]=1/根号2*arc

求∫(2x+1)dx不定积分

∫(2x+1)dx=∫2xdx+∫dx=x^2+x+C