求下列级数的收敛半径n! n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:37:19
求下列级数的收敛半径n! n
求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

求幂级数∑(∞,n=1)(x-1)^n/n2^n的收敛半径收敛域

后项比前项的绝对值的极限=|x-1|/2  收敛半径R=2x=3级数发散,x=-1级数收敛 收敛域[-1,3)

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

如何证明级数n^n/(n!)^2是收敛的

只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

判别下列级数的敛散性,请说明是绝对收敛还是条件收敛 求和(n=1到无穷)(-1)^(n-1)*n!/n^n

因为后项比前项的绝对值=[(n+1)!/(n+1)^(n+1)]/[n!/n^n]=n^n/(n+1)^n=1/(1+1/n)^n趋于1/e

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

求下列函数级数的收敛域

因为|coskz/k²|≤1/k²而Σ1/k²收敛所以原级数绝对收敛,即对任何实数都收敛所以收敛域为一切实数.

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

-1的n次方,的级数收敛吗,求证明

∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能

求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域!

令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,

求幂级数1+∑(∞,n=1)x^n/n的收敛半径、收敛域及和函数

f=∑(∞,n=1)x^n/nf‘=∑(∞,n=1)x^(n-1)=1/(1-x)|x|

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数的收敛半径!∞∑ z^n/n!n=0

R=lim(n->∞)an/a(n+1)=lim(n->∞)1/n!/1/(n+1)!=lim(n->∞)(n+1)=∞

1.求幂级数∑(∞,n=1) nx^(n+1)的收敛半径、收敛区间.

∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

求级数(4n^2+4n+2)x^2n/(2n+1)的收敛域与和函数

分成2个级数:(4n^2+4n+2)x^2n/(2n+1)=(2n+1)x^2n+x^2n/(2n+1)级数(2n+1)x^2n的收敛域(-1,1)级数x^2n/(2n+1)的也是收敛域(-1,1)故