求下列极限 lim ln(1 xe^Y) x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:59:27
(1)∫1/[x(x-1)]dx=∫[1/(x-1)-1/x]dx=ln|x-1|-ln|x|+C=ln|(x-1)/x|+C(2)∫cos2x/(sinx+cosx)dx=∫(cos²x-
这个用常用极限lim(1+x)^(1/x)=e就可以得出,很简单原式=lim(1+xe^x)^[(1/xe^x)e^x]=lime^(e^x)=e^1=e应该能看懂吧?看懂了就加分~再问:嗯。。看懂了
原式=lim(x->-∞)x/e^(-x)因为分子->-∞,分母->+∞,所以可以用洛必达法则=lim(x->-∞)-1/e^(-x)=0
令t=1/x,x→∞等效于t→0,以下极限为t→0的情况原式=lim[(e^t)/t-1/t]=lim[(e^t-1)/t]由于e^t-1和t在t→0时为等价无穷小,因此这个极限为1或者可以用洛必达(
原式=lim(1+xe^x)^[(1/xe^x)(xe^x/sinx)]x→0=e^lim(xe^x/sinx)x→0=e^lim(xe^x/x)x→0(sinx与x在x→0时是等价无穷小)=e^1=
lim[ln(1+x)-lnx]/x=limln[(1+x)/x]/x=limln(1+1/x)/x=0.
1、原式=(3-0*1)/(2*0+1^2)=3;2、∵│x*cos(1/y)│≤│x│,│y*sin(1/x)│≤│y│又lim(x->0)│x│=0,lim(y->0)│y│=0∴lm((x,y)
极限为1,这个还原吧(1/n^2)换成x,则变为x趋于0,罗必塔法则算得1
第一式:分子求导=4x^3-6x+2-cosx分母求导=4x^3-1x趋近于0时这个式子为-1第二式:分子求导=cosx分母求导=2xx趋近于a时这个式子为(cosa)/(2a)第三式:分子求导=-a
原式=limx(e-(1+1/x)^x)/e(1+1/x)^x),分母趋于e^2,现在看分子limx(e-(1+1/x)^x)=lim(e-(1+1/x)^x)/(1/x)用罗比达法则:分母导数为(-
此为0*无穷型,将其化为无穷/无穷型,以便可用洛必达法则当x趋于-无穷,将原极限化为limx/(-e^(-x))(洛必达法则)=lim1/-e^(-x)(-1)=lim1/e^(-x)=lime^x=
再问:再问:谢谢噢再答: 若满意,请采纳。精致的专业解答不易,得到采纳
求下列极限,【解】1、当x趋近2时,分母不为0,所以该题可以直接将x=2代入计算所以:lim(x^2+5)/(x-3)=-92、分母的变量是n,所以当x趋近1时,分母也不会为0,同上例直接代入x=1计
利用:1-cosx=2sin(x/2)sin(x/2),就可以化简了,结果:0;1/2;-2/3再问:第二个和第三个怎么算的再答:rt。
lim(x→0+)ln(sin3x)/ln(sinx)=lim(x→0+)[3cos3x/(sin3x)/[cosx/sinx]=lim(x→0+)(3sinx/sin3x=1再问:[3cos3x/(
分部积分法∫xe^x/(1+x)^2dx=-∫xe^xd[1/(1+x)]=-xe^x/(1+x)+∫(1+x)e^x×1/(1+x)dx=-xe^x/(1+x)+∫e^xdx=-xe^x/(1+x)
y'+(1-x)/x*y=e^2∫(1-x)/xdx=∫(1/x-1)dx=lnx-x∫e^2e^(lnx-x)dx=e^2∫xe^(-x)dx=e^2[-xe^(-x)+∫e^(-x)dx]=e^2
通过泰勒公式可以在0点展开ln(x+√(1+x^2):ln(x+√(1+x^2)=x+o(x)o(x)表示余项是x的高阶无穷小所以代入原式=limln(x+√(1+x^2))/x=lim[x+o(x)
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对